-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgradio_app.py
294 lines (254 loc) · 10.5 KB
/
gradio_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import gradio as gr
import textgrad as tg
import yaml
import logging
import requests
from typing import Optional, Dict, Any
from reward_model import TPORewardModel
from tpo_utils import run_test_time_training_tpo, run_test_time_training_bon
# 配置日志记录
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger('TPOWebUI')
class TPOWebUI:
def __init__(self):
self.llm_engine = None
self.rm = None
self.vllm_status = "未连接"
# 加载配置文件
try:
with open("config.yaml", "r", encoding="utf-8") as f:
self.config = yaml.safe_load(f)
logger.info("配置文件加载成功")
except Exception as e:
logger.error(f"加载配置文件失败: {str(e)}")
raise
def check_vllm_status(self, ip: str, port: int) -> str:
"""检查vLLM服务状态"""
try:
headers = {
"Authorization": f"Bearer {self.config['vllm']['api_key']}"}
response = requests.get(
f"http://{ip}:{port}/v1/models", headers=headers)
if response.status_code == 200:
self.vllm_status = "运行中"
return "vLLM服务正常运行"
elif response.status_code == 401:
self.vllm_status = "未授权"
return "vLLM服务认证失败:API密钥无效"
else:
self.vllm_status = "异常"
return f"vLLM服务异常: HTTP {response.status_code}"
except requests.RequestException as e:
self.vllm_status = "未连接"
return f"无法连接到vLLM服务: {str(e)}"
def initialize_models(self, server_model: str, reward_model: str, ip: str, port: int, max_tokens: int, api_key: str) -> str:
"""初始化模型"""
try:
# 更新API密钥配置
self.config['vllm']['api_key'] = api_key
# 检查vLLM服务状态
status_msg = self.check_vllm_status(ip, port)
if self.vllm_status != "运行中":
return f"初始化失败: {status_msg}"
# 初始化LLM引擎
model_name = f"server-{self.config['tpo']['server_model']}"
self.llm_engine = tg.get_engine(
model_name,
base_url=f"http://{self.config['tpo']['ip']}:{self.config['tpo']['port']}/v1",
api_key="token-abc123",
max_token=self.config['tpo']['max_tokens_all'],
)
logger.info(f"LLM引擎初始化成功: {server_model}")
# 初始化奖励模型
self.rm = TPORewardModel(reward_model)
logger.info(f"奖励模型初始化成功: {reward_model}")
return "模型初始化成功!"
except Exception as e:
logger.error(f"模型初始化失败: {str(e)}")
return f"初始化失败: {str(e)}"
def optimize_query(self, query: str, mode: str, max_iterations: int, sample_size: int, temperature: float) -> tuple[str, str, str]:
"""执行实时优化"""
if not query.strip():
return "请输入需要优化的文本!", "", ""
if not self.llm_engine or not self.rm:
return "请先初始化模型!", "", ""
if self.vllm_status != "运行中":
return "vLLM服务未连接或异常,请检查服务状态!", "", ""
try:
# 从配置文件获取参数
gen_params = {
"n": sample_size,
"temperature": temperature,
"top_p": 0.95,
"max_tokens": self.config["tpo"]["max_tokens_response"]
}
logger.info(f"开始优化,模式:{mode},最大迭代次数:{max_iterations}")
# 选择优化方法
optimize_func = run_test_time_training_bon if mode == "bon" else run_test_time_training_tpo
# 执行优化
result = optimize_func(
query,
self.llm_engine,
self.rm,
gen_params=gen_params,
tpo_mode=mode,
max_iters=max_iterations
)
logger.info("优化完成")
# 解析结果
outputs = []
scores = []
thoughts = []
# 遍历所有结果
for key, score in result.items():
# 从键中提取信息
_, query_text, answer_text = key.split("<SEP>")
# 提取思考过程
think_start = answer_text.find("<think>")
think_end = answer_text.find("</think>")
if think_start != -1 and think_end != -1:
thought = answer_text[think_start + 7:think_end].strip()
result_text = answer_text[think_end + 8:].strip()
else:
thought = ""
result_text = answer_text
thoughts.append(thought)
outputs.append(result_text)
scores.append(score)
# 找到最佳结果
if scores:
best_idx = scores.index(max(scores))
best_result = outputs[best_idx]
else:
best_result = "未能生成有效结果"
# 格式化输出
thoughts_text = "\n\n---\n\n".join(
[f"推理 {i+1}:\n{t}" for i, t in enumerate(thoughts[:sample_size]) if t])
outputs_text = "\n\n---\n\n".join(
[f"结果 {i+1}:\n{o}" for i, o in enumerate(outputs[:sample_size])])
scores_text = "\n\n---\n\n".join(
[f"结果 {i+1} 评分: {s}" for i, s in enumerate(scores[:sample_size])])
return outputs_text, scores_text, best_result
except Exception as e:
error_msg = f"优化过程出错:{str(e)}"
logger.error(error_msg)
return "", "", ""
def create_ui():
tpo = TPOWebUI()
with gr.Blocks(title="TPO 实时优化系统", theme=gr.themes.Soft()) as app:
gr.Markdown("# TPO 实时优化系统")
gr.Markdown("## 基于大语言模型的文本优化系统 —— 使输出结果更加偏向人类偏好")
with gr.Tab("模型设置"):
with gr.Row():
with gr.Column():
server_model = gr.Textbox(
value=tpo.config["tpo"]["server_model"],
label="服务模型",
info="输入vLLM服务使用的模型名称"
)
reward_model = gr.Textbox(
value=tpo.config["tpo"]["reward_model"],
label="奖励模型",
info="输入用于评估文本质量的奖励模型路径"
)
api_key = gr.Textbox(
value=tpo.config["vllm"]["api_key"],
label="API密钥",
info="输入vLLM服务的API密钥",
type="password"
)
with gr.Row():
with gr.Column():
ip = gr.Textbox(
value=tpo.config["tpo"]["ip"],
label="服务器IP",
info="vLLM服务器的IP地址"
)
port = gr.Number(
value=tpo.config["tpo"]["port"],
label="端口号",
info="vLLM服务器的端口号"
)
max_tokens = gr.Number(
value=tpo.config["tpo"]["max_tokens_all"],
label="最大Token数",
info="模型支持的最大token数量"
)
with gr.Row():
init_btn = gr.Button("初始化模型", variant="primary")
status_box = gr.Textbox(
label="系统状态",
value="未初始化",
interactive=False
)
init_btn.click(
fn=tpo.initialize_models,
inputs=[server_model, reward_model,
ip, port, max_tokens, api_key],
outputs=status_box
)
with gr.Tab("优化设置"):
with gr.Row():
query = gr.Textbox(lines=5, label="输入文本")
with gr.Row():
mode = gr.Radio(
choices=["tpo", "bon", "revision"],
value="tpo",
label="优化模式"
)
max_iterations = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="最大迭代次数"
)
sample_size = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="采样数量"
)
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.1,
label="温度"
)
optimize_btn = gr.Button("开始优化")
with gr.Row():
best_result_box = gr.Textbox(
label="最佳结果",
value="",
lines=5,
interactive=False
)
with gr.Row():
with gr.Column(scale=1):
results_box = gr.Textbox(
label="生成结果",
value="",
lines=10,
interactive=False
)
with gr.Column(scale=1):
scores_box = gr.Textbox(
label="评分结果",
value="",
lines=10,
interactive=False
)
optimize_btn.click(
fn=tpo.optimize_query,
inputs=[query, mode, max_iterations, sample_size, temperature],
outputs=[results_box, scores_box, best_result_box]
)
return app
if __name__ == "__main__":
app = create_ui()
app.launch(share=True, server_name="0.0.0.0", server_port=7860)