-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
340 lines (262 loc) · 11.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import sys
import gzip
import numpy as np
import classification.display_utils as dutils
import classification.generative_model_utils as gmutils
from classification.config_utils import load_config
from classification.dataset_utils import Dataset
def load_dataset() -> Dataset:
config = load_config()
dataset = Dataset(
config["dataset"]["path"],
config["dataset"]["train_count"],
config["dataset"]["features"],
config["dataset"]["labels"])
dataset.prepare_dataset()
return dataset
def load_mnist_dataset() -> tuple:
with gzip.open("data/train-images-idx3-ubyte.gz", 'rb') as f:
trainx = np.frombuffer(f.read(), np.uint8, offset=16)
trainx = trainx.reshape(-1, 784)
with gzip.open("data/train-labels-idx1-ubyte.gz", 'rb') as f:
trainy = np.frombuffer(f.read(), np.uint8, offset=8)
with gzip.open("data/t10k-images-idx3-ubyte.gz", 'rb') as f:
testx = np.frombuffer(f.read(), np.uint8, offset=16)
testx = testx.reshape(-1, 784)
with gzip.open("data/t10k-labels-idx1-ubyte.gz", 'rb') as f:
testy = np.frombuffer(f.read(), np.uint8, offset=8)
return trainx, trainy, testx, testy
def compare_uni_feature_stds() -> None:
dataset = load_dataset()
labels = dataset.get_labels()
features = dataset.get_features()
vars = np.zeros(len(features))
for label in labels:
for feature, _ in enumerate(features):
_, vars[feature], _ = gmutils.get_univariate_normal_dist(
dataset.get_trainx(),
dataset.get_trainy(),
label,
feature)
print(f"Minimum standard deviation for Class {label} is for feature {np.argmin(vars)} ({features[np.argmin(vars)]})")
dutils.display_univariate_plot(
dataset.get_trainx(),
dataset.get_trainy(),
label,
np.argmin(vars),
features)
def compare_uni_label_dists(feature: int) -> None:
dataset = load_dataset()
labels = dataset.get_labels()
features = dataset.get_features()
dutils.show_univariate_densities(
dataset.get_trainx(),
dataset.get_trainy(),
feature,
labels,
features)
def compare_uni_feature_classifications() -> None:
dataset = load_dataset()
labels = dataset.get_labels()
features = dataset.get_features()
train_errors = np.zeros(len(features))
test_errors = np.zeros(len(features))
for feature, _ in enumerate(features):
mu, var, pi = gmutils.fit_univariate_generative_model(
dataset.get_trainx(),
dataset.get_trainy(),
feature,
labels)
print("Train:")
train_errors[feature] = gmutils.test_univariate_model(
mu, var, pi,
dataset.get_trainx(),
dataset.get_trainy(),
feature,
labels,
features)
print("Test:")
test_errors[feature] = gmutils.test_univariate_model(
mu, var, pi,
dataset.get_testx(),
dataset.get_testy(),
feature,
labels,
features)
print()
optimum_feature = np.argmin(train_errors)
print(f"Minimum train error and the corresponding test error are respectively {train_errors[optimum_feature]} {test_errors[optimum_feature]}, that belongs to feature {optimum_feature} ({features[optimum_feature]})")
def compare_bivariate_label_dists(f1: int, f2: int) -> None:
dataset = load_dataset()
labels = dataset.get_labels()
features = dataset.get_features()
dutils.plot_bivariate_classes(
dataset.get_trainx(),
dataset.get_trainy(),
f1,
f2,
labels,
features)
def report_bivariate_errors(errors: np.ndarray, features: list) -> None:
for f1 in range(len(features)):
print(f"\t{f1}", end='')
print()
for f2 in range(len(features)):
print(f"{f2}\t", end='')
for f1 in range(len(features)):
if f1 >= f2:
print("\t", end='')
else:
print(f"{errors[f1, f2]:.3f}\t", end='')
print()
def compare_bivariate_feature_classifications() -> None:
dataset = load_dataset()
labels = dataset.get_labels()
features = dataset.get_features()
train_errors = np.ones((len(features), len(features)))
test_errors = np.ones((len(features), len(features)))
for f1 in range(len(features)):
for f2 in range(f1 + 1, len(features)):
mu, covar, pi = gmutils.fit_bivariate_generative_model(
dataset.get_trainx(),
dataset.get_trainy(),
[f1, f2],
labels)
train_errors[f1, f2] = gmutils.test_bivariate_model(
mu, covar, pi,
dataset.get_trainx(),
dataset.get_trainy(),
f1,
f2,
labels,
features)
test_errors[f1, f2] = gmutils.test_bivariate_model(
mu, covar, pi,
dataset.get_testx(),
dataset.get_testy(),
f1,
f2,
labels,
features)
print("Train errors:")
report_bivariate_errors(train_errors, features)
print()
print("Test errors:")
report_bivariate_errors(test_errors, features)
print()
optimum_feature_combination = np.argwhere(
train_errors == np.min(train_errors))
optimum_feature_combination = optimum_feature_combination[0, 0], optimum_feature_combination[0, 1]
print(f"Minimum train error and the corresponding test error are respectively {train_errors[optimum_feature_combination]:0.3f} and {test_errors[optimum_feature_combination]:0.3f}, that belong to the feature combination {optimum_feature_combination} ({features[optimum_feature_combination[0]]}, {features[optimum_feature_combination[1]]})")
print()
optimum_feature_combination = np.argwhere(
test_errors == np.min(test_errors))
optimum_feature_combination = optimum_feature_combination[0, 0], optimum_feature_combination[0, 1]
print(f"Minimum test error and the corresponding train error are respectively {test_errors[optimum_feature_combination]:0.3f} and {train_errors[optimum_feature_combination]:0.3f}, that belong to the feature combination {optimum_feature_combination} ({features[optimum_feature_combination[0]]}, {features[optimum_feature_combination[1]]})")
def draw_bivariate_decision_boundary(f1: int, f2: int):
dataset = load_dataset()
labels = dataset.get_labels()
features = dataset.get_features()
dutils.show_bivariate_decision_boundary(
dataset.get_trainx(),
dataset.get_trainy(),
f1,
f2,
labels,
features)
def run_multivariate_model_on_features(feature_indices: list) -> None:
dataset = load_dataset()
labels = dataset.get_labels()
features = dataset.get_features()
mu, sigma, pi = gmutils.fit_multivariate_generative_model(
dataset.get_trainx(),
dataset.get_trainy(),
labels)
if len(feature_indices) == 0:
feature_indices = range(len(features))
train_error = gmutils.test_multivariate_model(
mu, sigma, pi,
dataset.get_trainx(),
dataset.get_trainy(),
feature_indices,
labels)
print(f"Train error using features {feature_indices}: {train_error}")
test_error = gmutils.test_multivariate_model(
mu, sigma, pi,
dataset.get_testx(),
dataset.get_testy(),
feature_indices,
labels)
print(f"Test error using features {feature_indices}: {test_error}")
def classify_mnist(c: float) -> None:
trainx, trainy, testx, testy = load_mnist_dataset()
labels = [i for i in range(10)]
feature_indices = [i for i in range(trainx.shape[1])]
print("Fitting model...")
mu, sigma, pi = gmutils.fit_multivariate_generative_model(
trainx,
trainy,
labels)
print("Regularising the covariance matrix...")
sigma = gmutils.regularise_matrix(sigma, c, len(labels), len(feature_indices))
print("Calculating the train error...")
train_error = gmutils.test_multivariate_model(
mu, sigma, pi,
trainx,
trainy,
feature_indices,
labels)
print(f"Train error using features {feature_indices}: {train_error}")
print("Calculating the test error...")
test_error = gmutils.test_multivariate_model(
mu, sigma, pi,
testx,
testy,
feature_indices,
labels)
print(f"Test error using features {feature_indices}: {test_error}")
if __name__ == "__main__":
try:
if sys.argv[1] == "compare_uni_feature_stds":
compare_uni_feature_stds()
elif sys.argv[1] == "compare_uni_label_dists":
compare_uni_label_dists(int(sys.argv[2]))
elif sys.argv[1] == "compare_uni_feature_classifications":
compare_uni_feature_classifications()
elif sys.argv[1] == "compare_bivariate_label_dists":
compare_bivariate_label_dists(int(sys.argv[2]), int(sys.argv[3]))
elif sys.argv[1] == "compare_bivariate_feature_classifications":
compare_bivariate_feature_classifications()
elif sys.argv[1] == "draw_bivariate_decision_boundary":
draw_bivariate_decision_boundary(int(sys.argv[2]), int(sys.argv[3]))
elif sys.argv[1] == "run_multivariate_model_on_features":
if sys.argv[2] == "all":
run_multivariate_model_on_features([])
else:
feature_indices = [int(sys.argv[i]) for i in range(2, len(sys.argv))]
run_multivariate_model_on_features(feature_indices)
elif sys.argv[1] == "classify_mnist":
classify_mnist(float(sys.argv[2]))
else:
raise IndexError
except IndexError:
print("Arguments:")
print()
print("- compare_uni_feature_stds (Compare the standard deviations for each feature in the univariate schema)")
print()
print("- compare_uni_label_dists [feature_#] (Compare the guassian distributions of classes for the given feature in the univariate schema)")
print()
print("- compare_uni_feature_classifications (Fit models on data based on all features and compare the train and test errors in the univariate schema)")
print()
print("- compare_bivariate_features [feature_#_1] [feature_#_2] (Compare the guassian distributions of classes for the given feature combination in the bivariate schema)")
print()
print("- compare_bivariate_feature_classifications (Fit models on data based on all feature combinations and compare the train and test errors in the bivariate schema)")
print()
print("- draw_bivariate_decision_boundary [feature_#_1] [feature_#_2] (Display the decision boundary derived from the train data based on the given feature numbersin the bivariate schema)")
print()
print("- run_multivariate_model_on_features <all>/< [feature_#_1] [feature_#_2] ... > (Fit a model on data based on all features and report the train and test errors in the multivariate schema)")
print()
print("- classify_mnist [c] (Fit a model on the MNIST data based on all features and report the train and test errors in the multivariate schema)")
except KeyboardInterrupt:
print("User interrupted, exiting...")
pass