Some JavaScript utils for simple rendering of OME-Zarr images.
See the Documentation pages for more details and demos.
We use https://github.com/manzt/zarrita.js for loading zarr data.
Supports all versions of OME-Zarr v0.1 -> v0.5.
The URL must point to a multiscales
image (not a plate
or bioformats2raw.layout
group).
renderThumbnail()
uses rendering settings from omero
, metadata if the zarr image has it
and the lowest resolution of the multiscales pyramid by default:
import * as omezarr from "https://cdn.jsdelivr.net/npm/ome-zarr.js@latest/+esm";
import * as zarr from "https://cdn.jsdelivr.net/npm/zarrita@next/+esm";
const source = "https://uk1s3.embassy.ebi.ac.uk/idr/zarr/v0.4/idr0062A/6001240.zarr";
const store = new zarr.FetchStore(source);
let src = await omezarr.renderThumbnail(store);
document.getElementById("thumbnail").src = src;
renderImage()
uses the highest resolution dataset by default and allows you to
specify rendering settings, Z/T indices
const store = new zarr.FetchStore(source);
// arr will be full-sized array by default
const {arr, omero, multiscale} = await omezarr.getMultiscaleWithArray(store);
// turn on the channel we want to render... set color (or LUT which overrides color)
omero.channels[0].active = true;
omero.channels[0].color = "FF0000";
omero.channels[0].lut = "thermal.lut";
omero.channels[0].inverted = true;
// set rendering window, Z index
omero.channels[0].window.start = 100;
omero.channels[0].window.end = 500;
omero.rdefs.defaultZ = 50;
// render whole image
let src = await omezarr.renderImage(arr, multiscale.axes, omero);
document.getElementById("image").src = src;
We can choose to use different resolutions of the multiscales pyramid and to render a smaller region
const store = new zarr.FetchStore(source);
// we get a bunch of info: shapes etc. Optional to choose datasetIndex:
let datasetIndex = 1
const {arr, omero, multiscale, shapes, zarr_version} = await omezarr.getMultiscaleWithArray(store, datasetIndex);
// Shapes are calculated from the datasets.coordinateTransformations 'scale' info and the
// dimensions of the array that was loaded (largest array is loaded by default)
// shapes [2, 236, 275, 271], [2, 236, 138, 136], [2, 236, 69, 68]
console.log("shapes", shapes);
// load array from chosen path, corresponding to the 'shape' we want
const paths = multiscale.datasets.map((d) => d.path);
const path = paths[1];
// zarr_version is optional, but it means zarrita.js doesn't have to guess
const arr1 = await omezarr.getArray(store, path, zarr_version);
// render a region
let sliceIndices = {"x": [10, 50], "y": [0, 100]};
let src = await omezarr.renderImage(arr1, multiscale.axes, omero, sliceIndices);
The index.html page contains a demo of the features described above and can be viewed with:
$ npm install
$ npm run dev
To develop and build the docs, we need to build ome-zarr.js first so it can be imported from /dist/ by the docs:
$ npm run build
$ npm run docs:dev
I have experimented with using https://github.com/phillipdupuis/pydantic-to-typescript to generate typescript interfaces from https://github.com/ome-zarr-models/ome-zarr-models-py.
The src/types/ome.ts
file was generated with:
$ pydantic2ts --module src/ome_zarr_models/v04/image.py --output ome.ts
-
Bump
package.json
version -
Update
CHANGELOG.md
-
Commit changes
-
Then...
$ npm run build
$ npm run docs:build $ npm run docs:preview
$ npm pack $ npm publish
-
Finally,
$ git tag v0.0.9
and push tag andmain