-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain_pose.py
182 lines (161 loc) · 6.49 KB
/
train_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import argparse
import torch
from torch.utils.data import DataLoader
from bpc.utils.data_utils import BOPSingleObjDataset, bop_collate_fn
from bpc.pose.models.simple_pose_net import SimplePoseNet
from bpc.pose.models.losses import (
EulerAnglePoseLoss,
QuaternionPoseLoss,
SixDPoseLoss,
)
from bpc.pose.trainers.trainer import train_pose_estimation
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
import os
def parse_args():
parser = argparse.ArgumentParser(description="Train Pose Estimation Model")
parser.add_argument("--root_dir", type=str, required=True,
help="Path to dataset root directory (with train_pbr and optionally val)")
parser.add_argument("--use_real_val", action="store_true",
help="If set, use real validation dataset from root_dir/val if available. Otherwise, split train_pbr using train_ratio.")
parser.add_argument("--target_obj_id", type=int, default=11,
help="Target object ID")
parser.add_argument("--batch_size", type=int, default=32,
help="Batch size for training")
parser.add_argument("--epochs", type=int, default=100,
help="Number of training epochs")
parser.add_argument("--lr", type=float, default=1e-3,
help="Learning rate")
parser.add_argument("--num_workers", type=int, default=4,
help="Number of workers for data loading")
parser.add_argument("--checkpoints_dir", type=str, default="checkpoints",
help="Base directory for checkpoints")
parser.add_argument("--resume", action="store_true",
help="Resume training from the last checkpoint")
parser.add_argument("--loss_type", type=str, default="euler", choices=["euler", "quat", "6d"],
help="Rotation loss type to use (and set model output dimension accordingly)")
return parser.parse_args()
def find_scenes(directory):
"""
Finds scene IDs in a given directory (assuming scene subdirectories are named as digits).
"""
all_items = os.listdir(directory)
scene_ids = [item for item in all_items if item.isdigit()]
scene_ids.sort()
return scene_ids
def main():
args = parse_args()
# Determine training scenes from the "train_pbr" folder.
train_root = os.path.join(args.root_dir, "train_pbr")
if not os.path.exists(train_root):
raise FileNotFoundError(f"Training directory not found: {train_root}")
train_scene_ids = find_scenes(train_root)
print(f"[INFO] Found training scene_ids={train_scene_ids}")
# Determine validation scenes.
if args.use_real_val:
real_val_dir = os.path.join(args.root_dir, "val")
if os.path.exists(real_val_dir):
val_scene_ids = find_scenes(real_val_dir)
print(f"[INFO] Found validation scene_ids={val_scene_ids} from {real_val_dir}")
use_real_val_flag = True
else:
print("[WARN] Real validation directory not found, using train split ratio for validation.")
val_scene_ids = train_scene_ids
use_real_val_flag = False
else:
val_scene_ids = train_scene_ids
use_real_val_flag = False
# If using real validation, use the full train_pbr for training.
train_ratio = 1.0 if use_real_val_flag else 0.8
obj_id = args.target_obj_id
checkpoint_dir = os.path.join(args.checkpoints_dir, f"obj_{obj_id}")
os.makedirs(checkpoint_dir, exist_ok=True)
# Create the training dataset with the chosen train_ratio.
train_ds = BOPSingleObjDataset(
root_dir=args.root_dir,
scene_ids=train_scene_ids,
cam_ids=["cam1", "cam2", "cam3"],
target_obj_id=obj_id,
target_size=256,
augment=False, # Test
split="train",
train_ratio=train_ratio, # Modified here.
use_real_val=use_real_val_flag # Pass the flag if needed.
)
# Create the validation dataset.
val_ds = BOPSingleObjDataset(
root_dir=args.root_dir,
scene_ids=val_scene_ids,
cam_ids=["cam1", "cam2", "cam3"],
target_obj_id=obj_id,
target_size=256,
augment=False,
split="val",
use_real_val=use_real_val_flag
)
print(f"[INFO] train_ds: {len(train_ds)} samples")
print(f"[INFO] val_ds: {len(val_ds)} samples")
train_loader = DataLoader(
train_ds,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
collate_fn=bop_collate_fn
)
val_loader = DataLoader(
val_ds,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
collate_fn=bop_collate_fn
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = SimplePoseNet(loss_type=args.loss_type, pretrained=not args.resume).to(device)
checkpoint_path = os.path.join(checkpoint_dir, "last_checkpoint.pth")
if args.resume and os.path.exists(checkpoint_path):
print(f"[INFO] Loading checkpoint from {checkpoint_path}")
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint["model_state_dict"])
step_size = max(1, args.epochs // 3)
# Set the criterion based on loss_type.
if args.loss_type == "euler":
criterion = EulerAnglePoseLoss()
elif args.loss_type == "quat":
criterion = QuaternionPoseLoss()
elif args.loss_type == "6d":
criterion = SixDPoseLoss()
else:
raise ValueError("Invalid loss_type")
criterion_wrapper = criterion
optimizer = optim.Adam(model.parameters(), lr=args.lr)
scheduler = StepLR(optimizer, step_size=step_size, gamma=0.8)
if args.resume and os.path.exists(checkpoint_path):
checkpoint = torch.load(checkpoint_path)
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
train_pose_estimation(
model=model,
train_loader=train_loader,
val_loader=val_loader, # Use the correct validation loader.
criterion=criterion_wrapper,
optimizer=optimizer,
scheduler=scheduler,
epochs=args.epochs,
out_dir=checkpoint_dir,
device=device,
resume=args.resume
)
if __name__ == "__main__":
main()
"""
Example usage:
python3 train_pose.py \
--root_dir datasets/ \
--target_obj_id 14 \
--epochs 10 \
--batch_size 32 \
--lr 5e-4 \
--num_workers 16 \
--checkpoints_dir bpc/pose/pose_checkpoints/ \
--loss_type quat \
--use_real_val
"""