-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProcessing.py
executable file
·1052 lines (905 loc) · 42.3 KB
/
Processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<<<<<<< HEAD
#!/usr/bin/python
#-*-coding:utf-8-*-
'''@author:duncan'''
import pandas as pd
import numpy as np
#from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import KFold
from sklearn.metrics import roc_auc_score
from sklearn.preprocessing import LabelEncoder
from sklearn import preprocessing
#from sklearn.cross_validation import train_test_split
from sklearn.ensemble import GradientBoostingRegressor
#from sklearn.preprocessing import OneHotEncoder
# import xgboost as xgb
import lightgbm as lgb
#from pyfm import pylibfm
from sklearn.feature_extraction import DictVectorizer
from catboost import CatBoostRegressor
train_consumer_A = pd.read_csv("./train/scene_A/train_consumer_A.csv")
train_behavior_A = pd.read_csv('./train/scene_A/train_behavior_A.csv')
train_ccx_A = pd.read_csv("./train/scene_A/train_ccx_A.csv")
train_consumer_B = pd.read_csv("./train/scene_B/train_consumer_B.csv")
train_behavior_B = pd.read_csv('./train/scene_B/train_behavior_B.csv')
test_consumer_A = pd.read_csv("./test/scene_A/test_consumer_A.csv")
test_behavior_A = pd.read_csv('./test/scene_A/test_behavior_A.csv')
test_ccx_A = pd.read_csv("./test/scene_A/test_ccx_A.csv")
test_consumer_B = pd.read_csv("./test/scene_B/test_consumer_B.csv")
test_behavior_B = pd.read_csv('./test/scene_B/test_behavior_B.csv')
# read labels
Y = pd.read_csv('./train/scene_A/train_target_A.csv')
params = {
'task': 'train',
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': {'auc'},
'num_leaves': 31,
'learning_rate': 0.05,
'feature_fraction': 0.8,
'bagging_fraction': 0.8,
'bagging_freq': 5,
'verbose': 1,
}
def RemoveUnique(X):
to_remove = []
cols = X.columns
for col in cols:
if len(X[col].unique()) == 1:
to_remove.append(col)
X = X.drop(to_remove,axis=1)
# print ("remove %d columns" % len(to_remove))
return X
def RemoveNAN(X,threshold):
to_remove = []
total = len(X)
for col in X.columns:
# remove columns which has more than 90% nan
if X[col].count() * 1.0 / total < threshold:
to_remove.append(col)
X = X.drop(to_remove,axis=1)
# print ("remove %d columns" % len(to_remove))
return X
# remove only two vals(NAN & other val)
def RemoveTwoVals(X):
to_remove = []
for col in X.columns:
if len(X[col].unique()) == 2:
if np.nan in set(X[col].unique()):
to_remove.append(col)
# print("remove %d columns" % len(to_remove))
X = X.drop(to_remove,axis=1)
return X
# delete year columns
def RemoveYearColumns(basic_info):
cols = [col for col in basic_info.columns if basic_info[col].dtypes != object and len(basic_info[basic_info[col] > 2000]) * 1.0 / basic_info[col].count() > 0.9 and col != 'ccx_id']
# print("remove %d columns" % len(cols))
basic_info = basic_info.drop(cols,axis=1)
return basic_info
# process behaivor
def GetBehavior(basic_info):
basic_info = RemoveUnique(basic_info)
basic_info = RemoveNAN(basic_info,0.2)
basic_info = RemoveTwoVals(basic_info)
basic_info = RemoveYearColumns(basic_info)
return basic_info
# process consuming
# count the bad data
def CountBadCount(df):
c = 'V_11'
temp = df[["ccx_id", c]]
temp = temp[pd.isnull(temp[c]) | (temp[c] == "0000-00-00 00:00:00")]
newc = c + "_bad_count"
temp = temp.groupby("ccx_id")[c].count().reset_index().rename(columns={c: newc})
return temp
# remove duplicated rows and keep the last
def DeleteComplicate(consuming):
compare_cols = [col for col in consuming.columns if col != 'V_11']
consuming = consuming[compare_cols].drop_duplicates(keep='last')
return consuming
# calc the total cost of each user
def GenerateCostFeatures(consuming):
cost = pd.DataFrame(columns=['ccx_id'])
cost['ccx_id'] = consuming['ccx_id'].unique()
consuming['cost'] = consuming['V_12'] * consuming['V_13']
cost['ccx_id'] = consuming['ccx_id'].unique()
group = consuming.groupby('ccx_id')['cost'].sum().reset_index()
# group['ccx_id'] = group.index
cost = pd.merge(group,cost)
times = consuming.groupby('ccx_id')['V_1'].count().reset_index()
cost = pd.merge(times,cost)
cost.rename(columns={'V_1':'cost_times'},inplace=True)
return cost
# get each user cost each times(the same date)
def GetEachUserCostEachDate(consuming):
consuming['cost'] = consuming['V_12'] * consuming['V_13']
temp = consuming.groupby(['ccx_id','V_7'])['cost'].sum().reset_index()
total_cost = temp.groupby('ccx_id')['cost'].sum().reset_index()
times = temp.groupby('ccx_id')['cost'].count().reset_index()
times = times.rename(columns={'cost':'times'})
cost_each_time = pd.DataFrame(columns=['ccx_id','cost_each_time'])
cost_each_time['ccx_id'] = total_cost['ccx_id'].unique()
cost_each_time['cost_each_time'] = total_cost['cost'] / times['times']
return cost_each_time
# calc the times of each value(V_1,V_2,V_8,V_14)
def GenerateCategoricalFeatures(consuming):
res = pd.DataFrame(columns=['ccx_id'])
res['ccx_id'] = consuming['ccx_id'].unique()
categorical_cols = ['V_1','V_2','V_8','V_14']
for col in categorical_cols:
temp = consuming[['ccx_id',col]]
temp['count'] = 1
temp = temp.groupby(["ccx_id",col])["count"].sum().reset_index().pivot_table(index='ccx_id',columns=col).fillna(0)
cols = [temp.columns[i][1] for i in range(len(temp.columns))]
temp = pd.DataFrame(temp.values,columns=cols)
uid = [temp.index[i] for i in range(len(temp.index))]
temp = pd.DataFrame(temp.values,columns=cols)
temp['ccx_id'] = uid
res = pd.merge(res,temp,on='ccx_id',how='left').fillna(0)
return res
'''
# convert to categorical of consuming
def ConvertToCategorical(X,threshold):
has = ['ccx_id','times','cost','cost_each_time']
cols = [col for col in X.columns if col not in has]
to_categorical_cols = [col for col in cols if len(X[col].unique()) < threshold]
if len(to_categorical_cols) == 0:
return X
enc = OneHotEncoder(sparse=False)
temp = pd.DataFrame(enc.fit_transform(X[to_categorical_cols]))
temp['ccx_id'] = X['ccx_id']
X = X.drop(columns=to_categorical_cols,axis=1)
X = pd.merge(X,temp)
return X
'''
# remove 0 columns from consuming
def RemoveZero(X,threshold):
to_remove = []
total = len(X)
for col in X.columns:
# remove columns which has more than 90% nan
if len(X[X[col] != 0]) * 1.0 / total < threshold:
to_remove.append(col)
X = X.drop(to_remove,axis=1)
# print("remove %d columns" % len(to_remove))
return X
# process consuming
def GetConsuming(consuming_info):
# count the bad data
# temp = CountBadCount(consuming_info)
consuming = DeleteComplicate(consuming_info)
# consuming
# max_pay = pd.DataFrame(consuming.groupby(['ccx_id'])['V_5'].max().reset_index())
# max_pay = max_pay.rename(columns={'V_5':'max_pay'})
# min_pay = pd.DataFrame(consuming.groupby(['ccx_id'])['V_5'].min().reset_index())
# min_pay = min_pay.rename(columns={'V_5':'min_pay'})
# pay = pd.merge(max_pay,min_pay)
# pay = max_pay
# pay['difference'] = pay['max_pay'] - pay['min_pay']
cost = GenerateCostFeatures(consuming)
res = pd.DataFrame(GenerateCategoricalFeatures(consuming))
cost_each_date = GetEachUserCostEachDate(consuming)
res = pd.merge(cost,res)
res = pd.merge(res,cost_each_date)
consuming_info = RemoveZero(res,0.2)
# consuming_info = pd.merge(consuming_info,temp,how="left").fillna(0)
# consuming_info = RemoveZero(pd.merge(res,pay),0.2)
return consuming_info
# process query
# count query time in each month
def CountOneMonth(data,month):
cur = pd.DataFrame(columns={'ccx_id'})
cur['ccx_id'] = data['ccx_id'].unique()
res = data['2017-%d' % month:'2017-%d' % (month+1)].groupby('ccx_id')['count'].sum().reset_index().rename(columns={'count':'month%d'%month})
cur = pd.merge(cur,res,how='left').fillna(0)
return cur
# total month
def CountQueryTimesEachMonth(data):
cur = pd.DataFrame(columns={'ccx_id'})
cur['ccx_id'] = data['ccx_id'].unique()
months = [1,2,3,4,5]
for m in months:
temp = CountOneMonth(data,m)
cur = pd.merge(cur,temp,how='left')
return cur
# count query time
def QueryTimes(data):
date = pd.to_datetime(data['var_06'])
temp = data
temp['query_date'] = date
temp.set_index('query_date',inplace=True)
return CountQueryTimesEachMonth(temp)
# generate query data
def GetQueryFeatures(query_info,uids):
res = pd.DataFrame(columns=['ccx_id'])
res['ccx_id'] = uids
query_info['count'] = 1
categorical_cols = ['var_01','var_02','var_03','var_04','var_05']
# categorical_cols = ['var_01','var_02']
for col in categorical_cols:
temp = query_info.groupby(['ccx_id',col])['count'].sum().reset_index().pivot_table(index='ccx_id',columns=col).fillna(0)
uid = temp.index
temp = pd.DataFrame(temp.values,columns=[temp.columns[i][1] for i in range(len(temp.columns))]).fillna(0)
temp['ccx_id'] = uid
res = pd.merge(res,temp,how='left')
# query times of each user
temp = query_info.groupby('ccx_id')['count'].sum().reset_index()
temp.rename(columns={'count':'query_times'},inplace=True)
res = pd.merge(res,temp,how='left').fillna(0)
# remove 0 columns from query
res = RemoveZero(res,0.01)
# query times each month ([1...5])
query_times_each_month = QueryTimes(query_info)
res = pd.merge(res,query_times_each_month,how='left')
return res
# process data
def PreProcess(X,flag=True):
'''
:param X:
:param flag: normalize data (true or flase)
:return:
'''
le = LabelEncoder()
# convert 'object'
object_cols = X.columns[X.dtypes == object]
# delete object_cols
# X = X.drop(object_cols,axis=1)
for col in object_cols:
# fill nan
X[col] = X[col].fillna("-1")
le.fit(X[col].astype(str))
X[col] = le.transform(X[col].astype(str))
# fill nan
X = X.fillna(-1)
if flag:
# standardlization
min_max_scaler = preprocessing.MinMaxScaler()
X = min_max_scaler.fit_transform(X)
return X
def Train(regression,X,Y):
X = PreProcess(X)
regression = regression.fit(X,Y)
return regression
# xgb_params = {
# 'eta': 0.05,
# 'max_depth': 5,
# 'subsample': 0.7,
# 'colsample_bytree': 0.7,
# 'objective': 'binary:logistic',
# 'eval_metric': 'auc',
# 'silent': 1
# }
# metric on sklearn regression
def Metric(reg,X,Y,n):
auc = 0
# train & test 0.65 0.35
# train_x,test_x,train_y,test_y = train_test_split(X,Y,test_size=0.35,random_state=0)
# reg = Train(reg,train_x,train_y)
# pred = reg.predict_proba(PreProcess(test_x))[:,1]
# return roc_auc_score(test_y,pred)
# cross validation
kf = KFold(n_splits=n)
for train_index, test_index in kf.split(X):
X_train,X_test = X.iloc[train_index], X.iloc[test_index]
Y_train,Y_test = Y.iloc[train_index], Y.iloc[test_index]
# logitics regression
# regeression = Train(reg,X_train,Y_train)
# pred = regeression.predict_proba(PreProcess(X_test))[:,1]
# gbdt
est = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, random_state=0, loss='ls').fit(PreProcess(X_train,False), Y_train)
pred = est.predict(PreProcess(X_test,False))
# lightgbm
# merge X_train and B_info
# fm
# 需要转换成字典格式
# v = DictVectorizer()
# # print(PreProcess(X_train,False).to_dict("records"))
# train = v.fit_transform(PreProcess(X_train,False).to_dict("records"))
# reg.fit(train,np.asarray(Y_train.values))
# pred = reg.predict(v.transform(PreProcess(X_test,False).to_dict("records")))
# print(pred)
auc += roc_auc_score(Y_test,pred)
# compute average auc
return auc / n
def MetricLGBWithB_data(info,n,B_info=None):
auc = 0
features = [col for col in info.columns if col != 'ccx_id' and col != 'target']
X = info[features]
Y = info['target']
# cross validation
kf = KFold(n_splits=n,shuffle=True)
for train_index, test_index in kf.split(X):
X_train,X_test = X.iloc[train_index], X.iloc[test_index]
Y_train,Y_test = Y.iloc[train_index], Y.iloc[test_index]
# lightgbm
# merge X_train and B_info
# train_data = X_train
# label = Y_train
train_data = pd.concat([X_train,B_info[features]])
label = pd.concat([Y_train,B_info['target']])
train_data = lgb.Dataset(PreProcess(train_data,False),label=label)
bst = lgb.train(params,train_data,num_boost_round=150)
pred = bst.predict(PreProcess(X_test,False),num_iteration=bst.best_iteration)
print(pred)
auc += roc_auc_score(Y_test,pred)
# compute average auc
return auc / n
'''
# metric on xgboost
def MetricOnXgboost(X,Y,n):
auc = 0
# cross validation
kf = KFold(n_splits=n)
kf.get_n_splits(X)
for train_index, test_index in kf.split(X):
X_train,X_test = X.iloc[train_index], X.iloc[test_index]
Y_train,Y_test = Y.iloc[train_index], Y.iloc[test_index]
dtrain = xgb.DMatrix(PreProcess(X_train),label=Y_train)
dtest = xgb.DMatrix(PreProcess(X_test))
# evallist = [(dtest,'eval'), (dtrain,'train')]
bst = xgb.train(xgb_params,dtrain,500)
pred = bst.predict(dtest)
print(pred)
auc += roc_auc_score(Y_test,pred)
# compute average auc
return auc / n
'''
# process the format of data (fm)
def FormatData(data):
train = data.to_dict('records')
# 需要转换成字典格式
v = DictVectorizer()
return v.fit_transform(train)
# label B
def LabelB(train_consumer_A,train_behavior_A,train_behavior_B,train_consumer_B,target,Max_Iteration,test_behavior_A,test_consumer_A,test_behavior_B=None,test_consumer_B=None):
# process behaivor_info
# test_behavior = pd.concat([test_behavior_A,test_behavior_B])
test_behavior = test_behavior_A
behavior_info = pd.concat([train_behavior_A,train_behavior_B,test_behavior])
behavior_info = GetBehavior(behavior_info)
# process consuming_info
# test_consumer = pd.concat([test_consumer_A,test_consumer_B])
test_consumer = test_consumer_A
consuming_info = pd.concat([train_consumer_A,train_consumer_B,test_consumer])
consuming_info = GetConsuming(consuming_info)
info = pd.merge(behavior_info,consuming_info,how = 'left')
# add the label of A
info = pd.merge(info,target,how='left',on='ccx_id')
features = [col for col in info.columns if col != 'target' and col != 'ccx_id']
A_info = info[info.ccx_id.isin(train_behavior_A.ccx_id)]
B_info = info[info.ccx_id.isin(train_behavior_B.ccx_id)]
# iteration Max_iteration times
# lightgbm
iteration = 0
train_info = A_info
leave = B_info
while iteration < Max_Iteration:
train_data = lgb.Dataset(PreProcess(train_info[features],False),label=train_info['target'])
bst = lgb.train(params,train_data,num_boost_round=150)
# predict B
pred = bst.predict(PreProcess(leave[features],False),num_iteration=bst.best_iteration)
leave['predict'] = pred
leave.loc[leave['predict'] >= 0.7,'target'] = leave.loc[leave['predict'] >= 0.7,'predict']
leave.loc[leave['predict'] <= 0.1,'target'] = leave.loc[leave['predict'] <= 0.1,'predict']
# add B(has labels) into traindata
to_add = leave[~leave['target'].isnull()]
leave = leave[leave['target'].isnull()]
train_info = pd.concat([train_info,to_add])
iteration += 1
if(len(to_add) == 0):
break
print("iteration %d times" % iteration)
train_info = train_info.drop(['predict'],axis=1)
# set ccx_id of B is 0
train_info.loc[train_info.ccx_id.isin(train_behavior_B.ccx_id),'ccx_id'] = 0
# read test data
test_info_A = info[info.ccx_id.isin(test_behavior_A.ccx_id)]
# test_info_B = info[info.ccx_id.isin(test_behavior_B.ccx_id)]
return train_info,test_info_A
# Run
def Test(train_consumer_A,train_behavior_A,train_ccx_A,train_consumer_B,train_behavior_B):
# read behaivor
basic_info = GetBehavior(train_behavior_A)
print("behavior has %d features" % len(basic_info.columns))
# read consuming
consuming_info = GetConsuming(train_consumer_A)
# fei_features = pd.read_csv("feats_0601.csv")
print("consuming has %d features" % len(consuming_info.columns))
info = pd.merge(basic_info,consuming_info,how='left')
# # read query
uids = basic_info['ccx_id'].unique()
query_info = GetQueryFeatures(train_ccx_A,uids)
print("query has %d features" % len(query_info.columns))
# info = pd.merge(info,query_info,how='left')
# info = pd.merge(info,fei_features,how="left")
# info = basic_info
info = pd.merge(info,Y,how="outer")
label = info['target']
features = [col for col in info.columns if col != 'target' and col != 'ccx_id']
# print(len(features))
# lightgbm
# train_data = lgb.Dataset(PreProcess(info[features],False),label=label)
# print("without B data auc is %.3f(using bahavior and consuming data)" % np.mean((lgb.cv(params, train_data, 150, nfold=5))['auc-mean']))
# res = MetricLGBWithB_data(info,5,None)
# print(res)
# add B
train_data_with_B,test = LabelB(train_consumer_A,train_behavior_A,train_behavior_B,train_consumer_B,10)
train_behavior_B = pd.merge(train_data_with_B,query_info,how='left')
# split A and B
A_info = train_data_with_B[train_data_with_B['ccx_id'].isin(train_behavior_A['ccx_id'])]
B_info = train_data_with_B[train_data_with_B.ccx_id.isin(train_behavior_B['ccx_id'])]
res = MetricLGBWithB_data(A_info,5,B_info)
print("5 Fold CV in A with B data is %.4f" % res)
# features_with_B = [col for col in train_data_with_B.columns if col != 'target' and col != 'ccx_id']
# train_data_with_B = pd.merge(train_data_with_B,query_info,how='left')
# train_data_with_B = lgb.Dataset(PreProcess(train_data_with_B[features_with_B],False),label=train_data_with_B['target'])
# print("with B data auc is %.3f(using bahavior and consuming data)" % np.mean((lgb.cv(params, train_data_with_B, 150, nfold=5))['auc-mean']))
#
# fm
# fm = pylibfm.FM(num_factors=10, num_iter=100, verbose=True, task="regression", initial_learning_rate=0.001, learning_rate_schedule="optimal")
# res = Metric(fm,info[features],label,5)
# print(res)
# res = Metric(reg,info[features],label,5)
# res = MetricOnXgboost(info[features],label,5)
# print(res)
def run_ffg():
def preprocess_ccx_cons(ccx, cons):
cons['V_7'] = cons['V_7'].str.replace('/', '-')
ccx['var_06'] = ccx['var_06'].str.replace('/', '-')
cons['year'] = cons['V_7'].apply(lambda x: int(x.split()[0].split('-')[0]))
cons['month'] = cons['V_7'].apply(lambda x: int(x.split()[0].split('-')[1]))
cons['date'] = cons['V_7'].apply(lambda x: x.split()[0])
cons['time'] = cons['V_7'].apply(lambda x: x.split()[1])
cons['month_from_now'] = cons.apply(lambda x: (2017 - x['year']) * 12 + (6 - x['month']), axis = 1)
cons['day_from_now'] = (pd.to_datetime('2017-06-01') - pd.to_datetime(cons['date'])).apply(lambda x:x.days)
cons['hour'] = cons['time'].apply(lambda x: int(x.split(':')[0]))
ccx['year'] = ccx['var_06'].apply(lambda x: int(x.split('-')[0]))
ccx['month'] = ccx['var_06'].apply(lambda x: int(x.split('-')[1]))
ccx['month_from_now'] = ccx.apply(lambda x: (2017 - x['year']) * 12 + (6 - x['month']), axis = 1)
ccx['day_from_now'] = (pd.to_datetime('2017-06-01') - pd.to_datetime(ccx['var_06'])).apply(lambda x:x.days)
for cons_var in ['V_1', 'V_2', 'V_3', 'V_8', 'V_14']:
_a = cons.groupby(cons_var)[cons_var].count() / (1.0 * len(cons))
cons[cons_var + '_float'] = cons[cons_var].map(_a).fillna(0.0)
for ccx_var in ['var_02', 'var_03', 'var_04', 'var_05']:
_a = ccx.groupby(ccx_var)[ccx_var].count() / (1.0 * len(ccx))
ccx[ccx_var + '_float'] = ccx[ccx_var].map(_a).fillna(0.0)
def feats_b_behavior(b_a, b_b, b_a_test):
feats = b_a.iloc[:,20:-1].columns.values
for feat in feats:
for b in [b_a, b_b, b_a_test]:
b[feat] = b[feat].fillna(0)
return feats
# time = 'day_from_now' or 'month_from_now'
def feats_stat_cons_time(cons, b_a, b_b, b_a_test, time):
feats = []
for agg_method in ['mean', 'std', 'min', 'max']:
_a = cons.groupby('ccx_id')[time].agg(agg_method)
feat = 'trade_{}_{}'.format(agg_method, time)
for b in [b_a, b_b, b_a_test]:
b[feat] = b['ccx_id'].map(_a).fillna(9999)
feats.append(feat)
return feats
def feats_stat_cons_cato(cons, b_a, b_b, b_a_test):
feats = []
for agg_method in ['mean', 'std', 'min', 'max']:
for feat in ['V_4', 'V_5', 'V_6', 'V_9', 'V_10', 'V_12', 'V_13']:
_a = cons.groupby('ccx_id')[feat].agg(agg_method)
feat = 'cons_{}_{}'.format(agg_method, feat)
for b in [b_a, b_b, b_a_test]:
b[feat] = b['ccx_id'].map(_a)
feats.append(feat)
return feats
def feats_trade_cons(cons,b_a, b_b, b_a_test):
feats = []
# 近1、3、6、12、24、36个月网购交易总额
for m in [1, 3, 6, 12, 24, 36]:
_c = cons[cons.month_from_now <= m]
_a = _c.groupby('ccx_id')['V_6'].sum()
feat = 'total_pay_last_{}_month'.format(m)
for b in [b_a, b_b, b_a_test]:
b[feat] = b['ccx_id'].map(_a).fillna(0)
feats.append(feat)
# 近1、3、6、12、24、36个月网购交易总笔数
for m in [1, 3, 6, 12, 24, 36]:
_c = cons[cons.month_from_now <= m]
_a = _c.groupby('ccx_id')['V_6'].count()
feat = 'total_pay_times_last_{}_month'.format(m)
for b in [b_a, b_b, b_a_test]:
b[feat] = b['ccx_id'].map(_a).fillna(0)
feats.append(feat)
# 近3、6、12、24、36个月月均交易额
for m in [1, 3, 6, 12, 24, 36]:
feat = 'mean_pay_last_{}_month'.format(m)
for b in [b_a, b_b, b_a_test]:
b[feat] = b['total_pay_last_{}_month'.format(m)]/m
feats.append(feat)
# 近3、6、12、24、36个月月均交易笔数
for m in [1, 3, 6, 12, 24, 36]:
feat = 'mean_pay_times_last_{}_month'.format(m)
for b in [b_a, b_b, b_a_test]:
b[feat] = b['total_pay_times_last_{}_month'.format(m)]/m
feats.append(feat)
# 近1个月交易笔数比上近3、6、12、24、36个月平均交易笔数
for m in [3, 6, 12, 24, 36]:
feat = 'mean_pay_times_last_1divide_{}_month'.format(m)
for b in [b_a, b_b, b_a_test]:
b[feat] = b['mean_pay_times_last_1_month'] / (0.001 + b['mean_pay_times_last_{}_month'.format(m)])
feats.append(feat)
# 近3个月交易笔数比上近6、12、24、36个月平均交易笔数
for m in [6, 12, 24, 36]:
feat = 'mean_pay_times_last_3divide_{}_month'.format(m)
for b in [b_a, b_b, b_a_test]:
b[feat] = b['mean_pay_times_last_3_month'] / (0.001 + b['mean_pay_times_last_{}_month'.format(m)])
feats.append(feat)
# 近1个月交易额比上近3、6、12、24、36个月平均交易额
for m in [3, 6, 12, 24, 36]:
feat = 'mean_pay_last_1divide_{}_month'.format(m)
for b in [b_a, b_b, b_a_test]:
b[feat] = b['mean_pay_last_1_month'] / (0.001 + b['mean_pay_last_{}_month'.format(m)])
feats.append(feat)
# 近3个月交易额比上近6、12、24、36个月平均交易额
for m in [6, 12, 24, 36]:
feat = 'mean_pay_last_3divide_{}_month'.format(m)
for b in [b_a, b_b, b_a_test]:
b['mean_pay_last_3divide_{}_month'.format(m)] = b['mean_pay_last_3_month'] / (0.001 + b['mean_pay_last_{}_month'.format(m)])
feats.append(feat)
for m in [1, 3, 6, 12, 24, 36]:
feat = 'max_pay_last_{}_month'.format(m)
_c = cons[cons.month_from_now <= m]
_a = _c.groupby('ccx_id')['V_6'].max()
for b in [b_a, b_b, b_a_test]:
b[feat] = b['ccx_id'].map(_a).fillna(0)
feats.append(feat)
for m in [1, 3, 6, 12, 24, 36]:
feat = 'min_pay_last_{}_month'.format(m)
_c = cons[cons.month_from_now <= m]
_a = _c.groupby('ccx_id')['V_6'].min()
for b in [b_a, b_b, b_a_test]:
b[feat] = b['ccx_id'].map(_a).fillna(0)
feats.append(feat)
return feats
def feats_encoding_behavior_cato(b_a, b_b, b_a_test):
feats = []
for var in ['var3','var4','var5','var6','var11','var12','var13','var14','var15','var16','var17','var18']:
feat = var + '_float'
_a = b_a.groupby(var)[var].count() / (1.0 * len(b_a))
for b in [b_a, b_b, b_a_test]:
b[var] = b[var].fillna('na')
b[feat] = b[var].map(_a).fillna(0.0)
feats.append(feat)
return feats
def feats_encoding_mean_cons(cons,b_a,b_b,b_a_test):
feats = []
for var in ['V_1', 'V_2', 'V_3', 'V_8', 'V_14']:
feat = 'trade_{}_float_mean'.format(var)
_a = cons.groupby('ccx_id')['{}_float'.format(var)].mean()
b_a[feat] = b_a['ccx_id'].map(_a).fillna(0.0)
b_b[feat] = b_b['ccx_id'].map(_a).fillna(0.0)
b_a_test[feat] = b_a_test['ccx_id'].map(_a).fillna(0.0)
feats.append(feat)
return feats
def feats_encoding_mean_ccx(ccx, b_a, b_a_test):
feats = []
for var in ['var_02', 'var_03', 'var_04', 'var_05']:
feat = 'query_{}_float_mean'.format(var)
_a = ccx.groupby('ccx_id')['{}_float'.format(var)].mean()
b_a[feat] = b_a['ccx_id'].map(_a).fillna(0.0)
b_a_test[feat] = b_a_test['ccx_id'].map(_a).fillna(0.0)
feats.append(feat)
return feats
def feats_counts_ccx(ccx, b_a, b_a_test):
feats = [
'query_var1_c2_count',
'query_var1_c3_count',
'query_var2_T1_count'
]
for d, f in zip([
ccx[ccx.var_01 == 'C2'],
ccx[ccx.var_01 == 'C3'],
ccx[ccx.var_02 == 'T1']
], feats):
_a = d.groupby('ccx_id')['ccx_id'].count()
b_a[f] = b_a['ccx_id'].map(_a).fillna(0)
b_a_test[f] = b_a_test['ccx_id'].map(_a).fillna(0)
return feats
def feats_counts_cons(cons, b_a,b_b, b_a_test):
feats = [
'trade_var2_c60_count',
'trade_var2_c31_count',
'trade_var3_a4_count',
'trade_var8_pl1_count',
]
for d, f in zip([cons[cons.V_2 == 'C60'], cons[cons.V_2 == 'C31'], cons[cons.V_3 == 'a4'], cons[cons.V_3 == 'R0'], cons[cons.V_8 == 'PL1']], feats):
_a = d.groupby('ccx_id')['ccx_id'].count()
b_a[f] = b_a['ccx_id'].map(_a).fillna(0)
b_b[f] = b_b['ccx_id'].map(_a).fillna(0)
b_a_test[f] = b_a_test['ccx_id'].map(_a).fillna(0)
return feats
# time = 'day_from_now' or 'month_from_now'
def feats_stat_ccx_time(ccx, b_a, b_a_test, time):
feats = []
for agg_method in ['mean', 'std', 'min', 'max']:
_a = ccx.groupby('ccx_id')[time].agg(agg_method)
feat = 'query_{}_{}'.format(agg_method, time)
for b in [b_a, b_a_test]:
b[feat] = b['ccx_id'].map(_a).fillna(9999)
feats.append(feat)
return feats
def feats_query_cons(ccx, b_a, b_a_test):
feats = []
# 近1、3、6、12、24、36个月网购交易总笔数
for m in [1, 3, 6, 12, 24, 36]:
_c = ccx[ccx.month_from_now <= m]
_a = _c.groupby('ccx_id')['var_01'].count()
feat = 'total_query_times_last_{}_month'.format(m)
for b in [b_a, b_a_test]:
b[feat] = b['ccx_id'].map(_a).fillna(0)
feats.append(feat)
# 近3、6、12、24、36个月月均交易笔数
for m in [1, 3, 6, 12, 24, 36]:
feat = 'mean_query_times_last_{}_month'.format(m)
for b in [b_a, b_a_test]:
b[feat] = b['total_query_times_last_{}_month'.format(m)]/m
feats.append(feat)
# 近1个月交易笔数比上近3、6、12、24、36个月平均交易笔数
for m in [3, 6, 12, 24, 36]:
feat = 'mean_query_times_last_1divide_{}_month'.format(m)
for b in [b_a, b_a_test]:
b[feat] = b['mean_query_times_last_1_month'] / (0.001 + b['mean_query_times_last_{}_month'.format(m)])
feats.append(feat)
# 近3个月交易笔数比上近6、12、24、36个月平均交易笔数
for m in [6, 12, 24, 36]:
feat = 'mean_query_times_last_3divide_{}_month'.format(m)
for b in [b_a, b_a_test]:
b[feat] = b['mean_query_times_last_3_month'] / (0.001 + b['mean_query_times_last_{}_month'.format(m)])
feats.append(feat)
return feats
def get_model_a(X_train, y, feats_all):
train_data = lgb.Dataset(X_train[feats_all], label=y, free_raw_data=True)
params = {
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': 'auc',
'learning_rate': 0.05,
'num_threads': 16,
'verbose': -1,
'num_leaves': 8,
}
num_round = 100
return lgb.train(params, train_data, num_round)
train_consumer_A = pd.read_csv("./train/scene_A/train_consumer_A.csv")
train_behavior_A = pd.read_csv('./train/scene_A/train_behavior_A.csv')
train_ccx_A = pd.read_csv("./train/scene_A/train_ccx_A.csv")
train_consumer_B = pd.read_csv("./train/scene_B/train_consumer_B.csv")
train_behavior_B = pd.read_csv('./train/scene_B/train_behavior_B.csv')
test_consumer_A = pd.read_csv("./test/scene_A/test_consumer_A.csv")
test_behavior_A = pd.read_csv('./test/scene_A/test_behavior_A.csv')
test_ccx_A = pd.read_csv("./test/scene_A/test_ccx_A.csv")
test_consumer_B = pd.read_csv("./test/scene_B/test_consumer_B.csv")
test_behavior_B = pd.read_csv('./test/scene_B/test_behavior_B.csv')
Y = pd.read_csv('./train/scene_A/train_target_A.csv')
behavior = pd.merge(train_behavior_A, Y)
y = behavior['target']
b_a = behavior
b_b = test_behavior_B
b_a_test = test_behavior_A
cons = pd.concat([train_consumer_A, test_consumer_A, test_consumer_B], axis=0, ignore_index=True)
ccx = pd.concat([train_ccx_A, test_ccx_A], axis=0, ignore_index=True)
preprocess_ccx_cons(ccx, cons)
feats1 = list(feats_b_behavior(b_a, b_b, b_a_test))
feats2 = feats_encoding_behavior_cato(b_a, b_b, b_a_test)
feats3 = feats_stat_cons_time(cons, b_a, b_b, b_a_test, 'day_from_now')
feats4 = feats_stat_cons_time(cons, b_a, b_b, b_a_test, 'month_from_now')
feats5 = feats_stat_cons_cato(cons, b_a, b_b, b_a_test)
feats6 = feats_trade_cons(cons,b_a, b_b, b_a_test)
feats7 = feats_counts_cons(cons, b_a, b_a_test, b_b)
feats14 = feats_encoding_mean_cons(cons,b_a,b_b,b_a_test)
feats8= feats_encoding_mean_ccx(ccx, b_a, b_a_test)
feats9= feats_counts_ccx(ccx, b_a, b_a_test)
feats10= feats_stat_ccx_time(ccx, b_a, b_a_test, 'day_from_now')
feats11= feats_stat_ccx_time(ccx, b_a, b_a_test, 'month_from_now')
feats12 = feats_query_cons(ccx, b_a, b_a_test)
feats_b = feats1 + feats2 + feats3+ feats4+ feats5 + feats6+ feats7 + ['ccx_id', 'var1', 'var2', 'var7', 'var8', 'var9']
feats_a = feats_b + feats8 + feats9 + feats10 + feats11 + feats12 + feats14
feats_all_b = list(set(feats_b) - set(['target']))
feats_all_a = list(set(feats_a) - set(['target']))
clf = get_model_a(b_a, y, feats_all_a)
pred = clf.predict(b_a_test[feats_all_a].values)
return pred
# Genrate Results
def Run(test_consumer_A,test_behavior_A,test_ccx_A,test_consumer_B,test_behavior_B,use_B=False):
# if use_B == False:
# without B data
# read behaivor
train_A_index = len(train_behavior_A)
test_A_index = len(test_behavior_A)
behavior_info = pd.concat([train_behavior_A,test_behavior_A,test_behavior_B])
basic_info = GetBehavior(behavior_info)
# read consuming
consuming_info = pd.concat([train_consumer_A,test_consumer_A,test_consumer_B])
consuming_info = GetConsuming(consuming_info)
# read ccx_A
ccx_A = pd.concat([train_ccx_A,test_ccx_A])
uids = basic_info['ccx_id'].unique()
query_info = GetQueryFeatures(ccx_A,uids)
info = pd.merge(basic_info,consuming_info,how='left')
info = pd.merge(info,query_info,how='left')
info = pd.merge(info,Y,how="outer")
label = info.iloc[:train_A_index]['target']
features = [col for col in info.columns if col != 'target']
print("without B data %d features" % len(features))
# lightgbm
train_data = lgb.Dataset(PreProcess(info.iloc[:train_A_index][features],False),label=label)
bst = lgb.train(params,train_data,num_boost_round=150)
# catboost
# train_data = info.iloc[:train_A_index]
# categorical_features = np.where(train_data[features].dtypes != np.float)[0]
#
# model=CatBoostRegressor(iterations=150, depth=3, learning_rate=0.1, loss_function='RMSE')
# model.fit(train_data[features].fillna(-1),train_data['target'],cat_features=categorical_features)
yiming = bst.predict(PreProcess(info.iloc[train_A_index:train_A_index+test_A_index][features],False),num_iteration=bst.best_iteration)
# predict_result_A['prob'] = model.predict(info.iloc[train_A_index:train_A_index+test_A_index][features].fillna(-1))
# else:
# add B data
train_behavior_consume,test_behavior_consume_A = LabelB(train_consumer_A,train_behavior_A,train_behavior_B,train_consumer_B,Y,10,test_behavior_A,test_consumer_A)
train_ccx = pd.concat([train_ccx_A,test_ccx_A])
ccx = GetQueryFeatures(train_ccx,pd.concat([train_behavior_A.ccx_id,test_behavior_A.ccx_id]))
train_ccx = ccx[ccx.ccx_id.isin(train_behavior_A.ccx_id)]
test_ccx = ccx[ccx.ccx_id.isin(test_behavior_A.ccx_id)]
train_data = pd.merge(train_behavior_consume,train_ccx,how='left')
test_data = pd.merge(test_behavior_consume_A,test_ccx,how='left')
label = train_data['target']
features = [col for col in train_data.columns if col != 'target']
print("with B data %d features" % len(features))
# set the weight
train_data['weight'] = 1
train_data.loc[train_data.ccx_id.isin(train_behavior_B.ccx_id),'weight'] = 0.5
weight = train_data['weight']
train_data = lgb.Dataset(PreProcess(train_data[features],False),label=label,weight=weight)
bst = lgb.train(params,train_data,num_boost_round=150)
predict_result_A = pd.DataFrame(columns=['ccx_id','prob'])
predict_result_A['ccx_id'] = test_data['ccx_id'].unique()
yiming_withB = bst.predict(PreProcess(test_data[features],False),num_iteration=bst.best_iteration)
# fang fei guo
feiguo = run_ffg()
predict_result_A = pd.DataFrame(columns=['ccx_id','prob'])
predict_result_A['ccx_id'] = info.iloc[train_A_index:train_A_index+test_A_index]['ccx_id'].unique()
predict_result_A['prob'] = 0.2 * yiming + 0.3 * yiming_withB + 0.5 * feiguo
predict_result_A.to_csv('./predict_result_A.csv',encoding='utf-8',index=False)
PredictB()
def PredictB():
# read behaivor
train_A_index = len(train_behavior_A)
test_A_index = len(test_behavior_A)
behavior_info = pd.concat([train_behavior_A,test_behavior_A,test_behavior_B])
basic_info = GetBehavior(behavior_info)
# read consuming
consuming_info = pd.concat([train_consumer_A,test_consumer_A,test_consumer_B])
consuming_info = GetConsuming(consuming_info)
info = pd.merge(basic_info,consuming_info,how='left')
info = pd.merge(info,Y,how="outer")
features = [col for col in info.columns if col != 'target']
# label = info.iloc[:train_A_index]['target']
predict_result_B = pd.DataFrame(columns=['ccx_id','prob'])
predict_result_B['ccx_id'] = info.iloc[train_A_index+test_A_index:]['ccx_id'].unique()
# lightgbm
# retrain
# param = {'num_leaves':31, 'objective':'binary','metric':'auc','boosting_type': 'gbdt'}
features_B = [col for col in features if col != 'ccx_id']
print(len(features_B))
# train_data = lgb.Dataset(PreProcess(info.iloc[:train_A_index][features_B],False),label=label)
# bst = lgb.train(param,train_data,num_boost_round=50)
# catboost
# features_B = [col for col in features if col != 'ccx_id']
train_data = info.iloc[:train_A_index]
categorical_features = np.where(train_data[features_B].dtypes != np.float)[0]
model=CatBoostRegressor(iterations=150, depth=3, learning_rate=0.1, loss_function='RMSE',random_seed=2018)
model.fit(train_data[features_B].fillna(-1),train_data['target'],cat_features=categorical_features)
predict_result_B['prob'] = model.predict(info.iloc[train_A_index+test_A_index:][features_B].fillna(-1))
predict_result_B.to_csv('./predict_result_B.csv',encoding='utf-8',index=False)
# using extra train and test data
def ValidateByExtraData():
auc = 0
flag = True
for i in range(1,6):
# train_data,test_data = ReadExtraTrainTestData(str(i),True)
train_data,test_data = ReadExtraTrainTestData(str(i),flag)
features = [col for col in train_data.columns if col != 'target']
# lightgbm
# if use B, set the weight (A:1; B:0.6)
if flag:
train_data['weight'] = 1
train_data.loc[train_data.ccx_id.isin(train_behavior_B.ccx_id),'weight'] = 0.5
weight = train_data['weight']
train_data = lgb.Dataset(PreProcess(train_data[features],False),label=train_data['target'],weight=weight)
else:
train_data = lgb.Dataset(PreProcess(train_data[features],False),label=train_data['target'])
bst = lgb.train(params,train_data,num_boost_round=150)
pred = bst.predict(PreProcess(test_data[features],False),num_iteration=bst.best_iteration)
# print(pred)
predict_result = pd.DataFrame(columns=['ccx_id','prob'])
predict_result['ccx_id'] = test_data['ccx_id'].unique()
predict_result['prob'] = pred
predict_result.to_csv('./predict_result_%d.csv' % i,encoding='utf-8',index=False)
# catboost
# categorical_features = np.where(train_data[features].dtypes != np.float)[0]
#
# # categorical_features = np.where(train_data.dtypes != np.float)
#
# model=CatBoostRegressor(iterations=150, depth=3, learning_rate=0.1, loss_function='RMSE')
# model.fit(train_data[features].fillna(-1),train_data['target'],cat_features=categorical_features)
# pred = model.predict(test_data[features].fillna(-1))
temp = roc_auc_score(test_data['target'],pred)
print("DataSet %d : %.4f" % (i,temp))
auc += temp
return auc / 5
# read train_data
def ReadExtraTrainTestData(valid_number,use_B=False):
path = "./train_test/train_test/train_test_"
# read train A
train_behavior_A = pd.read_csv(path+valid_number+"/scene_A/train_behavior_A.csv")
train_consumer_A = pd.read_csv(path+valid_number+"/scene_A/train_consumer_A.csv")
train_ccx_A = pd.read_csv(path+valid_number+"/scene_A/train_ccx_A.csv")
# read test A
test_behavior_A = pd.read_csv(path+valid_number+"/scene_A/test_behavior_A.csv")
test_consumer_A = pd.read_csv(path+valid_number+"/scene_A/test_consumer_A.csv")
test_ccx_A = pd.read_csv(path+valid_number+"/scene_A/test_ccx_A.csv")
# read target A
train_target = pd.read_csv(path+valid_number+"/scene_A/train_target_A.csv")
test_target = pd.read_csv(path+valid_number+"/scene_A/test_target_A.csv")
# read B data(has read)
train_ccx = pd.concat([train_ccx_A,test_ccx_A])
if use_B:
# extract features
# train_behavior_consume,test_behavior_consume_A,test_behavior_consume_B = LabelB(train_consumer_A,train_behavior_A,train_behavior_B,train_consumer_B,pd.concat([train_target,test_target]),10,test_behavior_A,test_consumer_A,test_behavior_B,test_consumer_B)
train_behavior_consume,test_behavior_consume_A = LabelB(train_consumer_A,train_behavior_A,train_behavior_B,train_consumer_B,pd.concat([train_target,test_target]),10,test_behavior_A,test_consumer_A)
ccx = GetQueryFeatures(train_ccx,pd.concat([train_behavior_A.ccx_id,test_behavior_A.ccx_id]))
train_ccx = ccx[ccx.ccx_id.isin(train_behavior_A.ccx_id)]
test_ccx = ccx[ccx.ccx_id.isin(test_behavior_A.ccx_id)]
# generate train and test data
train_data = pd.merge(train_behavior_consume,train_ccx,how='left')
test_data = pd.merge(test_behavior_consume_A,test_ccx,how='left')
else:
train_index = len(train_behavior_A)
behavior = pd.concat([train_behavior_A,test_behavior_A])
behavior = GetBehavior(behavior)
consumer = pd.concat([train_consumer_A,test_consumer_A])
consumer = GetConsuming(consumer)