-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutil.py
562 lines (462 loc) · 19.6 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
import sys
import copy
import random
import numpy as np
import multiprocessing
import time
import os
import heapq
from collections import defaultdict
import metrics
from sklearn.preprocessing import MinMaxScaler
from tqdm import tqdm
import copy
Ks = [1, 2, 3, 4, 5, 10, 20, 40, 50, 60, 70, 80, 90,100]
cores = multiprocessing.cpu_count() // 2
def load_file_and_sort(filename):
data = defaultdict(list)
max_uind = 0
max_iind = 0
with open(filename, 'r') as f:
for line in f:
one_interaction = line.rstrip().split("\t")
uind = int(one_interaction[0]) + 1
iind = int(one_interaction[1]) + 1
max_uind = max(max_uind, uind)
max_iind = max(max_iind, iind)
t = float(one_interaction[2])
data[uind].append((iind, t))
sorted_data = {}
for u, i_list in data.items():
sorted_interactions = sorted(i_list, key=lambda x:x[1])
seq = [interaction[0] for interaction in sorted_interactions]
sorted_data[u] = seq
return sorted_data, max_uind, max_iind
def data_load(data_name):
train_file = f"../../seq_itemsim/data/{data_name}/train.txt"
valid_file = f"../../seq_itemsim/data/{data_name}/valid.txt"
test_file = f"../../seq_itemsim/data/{data_name}/test.txt"
user_train, usernum, itemnum = load_file_and_sort(train_file)
user_valid, _, _ = load_file_and_sort(valid_file)
user_test, _, _ = load_file_and_sort(test_file)
num_valid = sum([len(i_list) for _, i_list in user_valid.items()])
num_test = sum([len(i_list) for _, i_list in user_test.items()])
print("num: ", num_valid, num_test)
return [user_train, user_valid, user_test, usernum, itemnum]
def data_loadMoHRdata(data_name):
dataset = np.load('./data/'+data_name+'Partitioned.npy', allow_pickle=True)
[user_training, user_validation, user_testing, Item, usernum, itemnum] = dataset
user_valid = defaultdict(list)
user_test = defaultdict(list)
user_train = defaultdict(list)
for u, ituple in user_validation.items():
if len(ituple) > 0:
user_valid[u+1] = [ituple[1]+1]
for u, ituple in user_testing.items():
if len(ituple) > 0:
user_test[u+1] = [ituple[1]+1]
for u, ilist in user_training.items():
user_train[u+1] = [i+1 for i in ilist]
num_valid = sum([len(i_list) for _, i_list in user_valid.items()])
num_test = sum([len(i_list) for _, i_list in user_test.items()])
print("num: ", num_valid, num_test)
return [user_train, user_valid, user_test, usernum, itemnum+1]
def get_performance(user_pos_test, r, auc, Ks):
precision, recall, ndcg, hit_ratio = [], [], [], []
for K in Ks:
precision.append(metrics.precision_at_k(r, K))
recall.append(metrics.recall_at_k(r, K, len(user_pos_test)))
ndcg.append(metrics.ndcg_at_k(r, K))
hit_ratio.append(metrics.hit_at_k(r, K))
mrr = metrics.mrr(r)
return {'recall': np.array(recall), 'precision': np.array(precision),
'ndcg': np.array(ndcg), 'hit_ratio': np.array(hit_ratio), 'auc': auc, 'mrr': mrr}
def get_auc(item_score, user_pos_test):
item_score = sorted(item_score.items(), key=lambda kv: kv[1])
item_sort = [x[0] for x in item_score]
posterior = [x[1] for x in item_score]
pos_ranks = defaultdict(list)
for ind in range(len(item_score)):
pred_item = item_score[ind][0]
if pred_item in user_pos_test:
pos_ranks[pred_item].append(ind+1)
r = []
for i in item_sort:
if i in user_pos_test:
r.append(1)
else:
r.append(0)
auc = metrics.auc(ground_truth=r, prediction=posterior)
return auc, pos_ranks
def ranklist_by_sorted(user_pos_test, item_score, Ks):
K_max = max(Ks)
K_max_item_score = heapq.nsmallest(K_max, item_score, key=item_score.get)
r = []
for i in K_max_item_score:
if i in user_pos_test:
r.append(1)
else:
r.append(0)
auc, pos_ranks = get_auc(item_score, user_pos_test)
return r, auc, K_max_item_score, pos_ranks
def eval_one_interaction(x):
result = {
"precision": np.zeros(len(Ks)),
"recall": np.zeros(len(Ks)),
"ndcg": np.zeros(len(Ks)),
"hit_ratio": np.zeros(len(Ks)),
"auc": 0.,
"mrr": 0.,
}
test_user = x[0]
test_item = x[1]
score_dict = x[2]
#score_dict = {item: item_score for item, item_score in scores}
num_test_item_candidates = x[3]
user_pos_test = [test_item]
r, auc, K_max_pred_items, pos_ranks = ranklist_by_sorted(user_pos_test, score_dict, Ks)
#if len(score_dict) < num_test_item_candidates:
# r = rank_corrected(np.array(r), len(score_dict), num_test_item_candidates)
re = get_performance(user_pos_test, r, auc, Ks)
result['precision'] += re['precision']
result['recall'] += re['recall']
result['ndcg'] += re['ndcg']
result['hit_ratio'] += re['hit_ratio']
result['auc'] += re['auc']
result['mrr'] += re['mrr']
return result, test_user, pos_ranks
def eval_one_setitems(x):
result = {
"recall": 0,
"ndcg": 0
}
ranks = x[0]
k_ind = x[1]
test_num_items = x[2]
freq_ind = x[3]
result['recall'] = metrics.itemperf_recall(ranks, Ks[k_ind])
result['ndcg'] = metrics.itemperf_ndcg(ranks, Ks[k_ind], test_num_items)
return result, k_ind, freq_ind
def rank_corrected(r, m, n):
pos_ranks = np.argwhere(r==1)[:,0]
corrected_r = np.zeros_like(r)
for each_sample_rank in list(pos_ranks):
corrected_rank = int(np.floor(((n-1)*each_sample_rank)/m))
if corrected_rank >= len(corrected_r) - 1:
continue
corrected_r[corrected_rank] = 1
assert np.sum(corrected_r) <= 1
return corrected_r
def evaluate(model, dataset, args, sess, testorvalid):
[train, valid, test, usernum, itemnum] = copy.deepcopy(dataset)
item_freq = defaultdict(int)
for u, ilist in train.items():
for itemid in ilist:
item_freq[itemid] += 1
freq_quantiles = np.array([1, 3, 7, 20, 50])
items_in_freqintervals = [[] for _ in range(len(freq_quantiles)+1)]
for item, freq_i in item_freq.items():
interval_ind = -1
for quant_ind, quant_freq in enumerate(freq_quantiles):
if freq_i <= quant_freq:
interval_ind = quant_ind
break
if interval_ind == -1:
interval_ind = len(items_in_freqintervals) - 1
items_in_freqintervals[interval_ind].append(item)
results = {
"precision": np.zeros(len(Ks)),
"recall": np.zeros(len(Ks)),
"ndcg": np.zeros(len(Ks)),
"hit_ratio": np.zeros(len(Ks)),
"auc": 0.,
"mrr": 0.,
}
short_seq_results = {
"precision": np.zeros(len(Ks)),
"recall": np.zeros(len(Ks)),
"ndcg": np.zeros(len(Ks)),
"hit_ratio": np.zeros(len(Ks)),
"auc": 0.,
"mrr": 0.,
}
num_short_seqs = 0
long_seq_results = {
"precision": np.zeros(len(Ks)),
"recall": np.zeros(len(Ks)),
"ndcg": np.zeros(len(Ks)),
"hit_ratio": np.zeros(len(Ks)),
"auc": 0.,
"mrr": 0.,
}
num_long_seqs = 0
short7_seq_results = {
"precision": np.zeros(len(Ks)),
"recall": np.zeros(len(Ks)),
"ndcg": np.zeros(len(Ks)),
"hit_ratio": np.zeros(len(Ks)),
"auc": 0.,
"mrr": 0.,
}
num_short7_seqs = 0
short37_seq_results = {
"precision": np.zeros(len(Ks)),
"recall": np.zeros(len(Ks)),
"ndcg": np.zeros(len(Ks)),
"hit_ratio": np.zeros(len(Ks)),
"auc": 0.,
"mrr": 0.,
}
num_short37_seqs = 0
medium3_seq_results = {
"precision": np.zeros(len(Ks)),
"recall": np.zeros(len(Ks)),
"ndcg": np.zeros(len(Ks)),
"hit_ratio": np.zeros(len(Ks)),
"auc": 0.,
"mrr": 0.,
}
num_medium3_seqs = 0
medium7_seq_results = {
"precision": np.zeros(len(Ks)),
"recall": np.zeros(len(Ks)),
"ndcg": np.zeros(len(Ks)),
"hit_ratio": np.zeros(len(Ks)),
"auc": 0.,
"mrr": 0.,
}
num_medium7_seqs = 0
if testorvalid == "test":
eval_data = test
else:
eval_data = valid
num_valid_interactions = 0
pool = multiprocessing.Pool(cores)
all_predictions_results = defaultdict(list)
batch_u = []
batch_u_seq = []
batch_item_idx = []
batch_test_item = []
u_ind = 0
eval_num_users = 0
for u, i_list in eval_data.items():
u_ind += 1
if len(train[u]) < 1 or len(eval_data[u]) < 1:
print("skipping ", u)
continue
eval_num_users += 1
rated = set(train[u])
if testorvalid == "test":
valid_set = set(valid.get(u, []))
rated = rated | valid_set
seq = np.zeros([args.maxlen], dtype=np.int32)
idx = args.maxlen - 1
if testorvalid == "test":
if u in valid:
for i in reversed(valid[u]):
if idx == -1: break
seq[idx] = i
idx -= 1
for i in reversed(train[u]):
if idx == -1: break
seq[idx] = i
idx -= 1
item_idx = [i_list[0]]
if args.evalnegsample == -1:
item_idx += list(set([i for i in range(itemnum)]) - rated - set([i_list[0]]))
else:
item_candiates = list(set([i for i in range(itemnum)]) - rated - set([i_list[0]]))
if args.evalnegsample >= len(item_candiates):
item_idx += item_candiates
else:
item_idx += list(np.random.choice(item_candiates, size=args.evalnegsample, replace=False))
#batch_u_seq.append(seq)
#batch_u.append(u)
#batch_test_item.append(i_list[0])
predictions = model.predict(sess, [u], [seq], item_idx)
item_scores_dict = {}
for ind in range(predictions.shape[0]):
item_scores_dict[item_idx[ind]] = predictions[ind]
all_predictions_results[u] = [item_scores_dict, i_list[0]]
#batch_u_seq = []
#batch_item_idx = []
#batch_u = []
#batch_test_item = []
assert len(batch_u) == 0
assert eval_num_users == len(all_predictions_results)
print('eval num users: ', eval_num_users)
pred_scores_list = []
test_item_list = []
test_user_list = []
test_num_test_candidates = []
all_predictions_results_output = []
for test_u, pred_scores_gt in all_predictions_results.items():
test_user_idx, test_item_idx = test_u, pred_scores_gt[1]
# unk_predictions = [item_score[1] for item_score in pred_scores]
#
# scaler = MinMaxScaler()
# scale_pred = list(np.transpose(scaler.fit_transform(np.transpose(np.array([unk_predictions]))))[0])
pred_scores_list.append(pred_scores_gt[0])
test_item_list.append(test_item_idx)
test_user_list.append(test_user_idx)
test_num_test_candidates.append(itemnum)
batch_data = zip(test_user_list, test_item_list, pred_scores_list, test_num_test_candidates)
batch_result = pool.map(eval_one_interaction, batch_data)
test_user_set = set()
all_pos_items_ranks = defaultdict(list)
for oneresult in batch_result:
re, result_user, pos_items_ranks = oneresult
results["precision"] += re["precision"]
results["recall"] += re["recall"]
results["ndcg"] += re["ndcg"]
results["hit_ratio"] += re["hit_ratio"]
results["auc"] += re["auc"]
results["mrr"] += re["mrr"]
test_user_set.add(result_user)
for i, rank_list in pos_items_ranks.items():
all_pos_items_ranks[i].extend(rank_list)
if len(train[result_user]) <= 3:
short_seq_results["precision"] += re["precision"]
short_seq_results["recall"] += re["recall"]
short_seq_results["ndcg"] += re["ndcg"]
short_seq_results["hit_ratio"] += re["hit_ratio"]
short_seq_results["auc"] += re["auc"]
short_seq_results["mrr"] += re["mrr"]
num_short_seqs += 1
if len(train[result_user]) <= 7:
short7_seq_results["precision"] += re["precision"]
short7_seq_results["recall"] += re["recall"]
short7_seq_results["ndcg"] += re["ndcg"]
short7_seq_results["hit_ratio"] += re["hit_ratio"]
short7_seq_results["auc"] += re["auc"]
short7_seq_results["mrr"] += re["mrr"]
num_short7_seqs += 1
if len(train[result_user]) > 3 and len(train[result_user]) <= 7:
short37_seq_results["precision"] += re["precision"]
short37_seq_results["recall"] += re["recall"]
short37_seq_results["ndcg"] += re["ndcg"]
short37_seq_results["hit_ratio"] += re["hit_ratio"]
short37_seq_results["auc"] += re["auc"]
short37_seq_results["mrr"] += re["mrr"]
num_short37_seqs += 1
if len(train[result_user]) > 3 and len(train[result_user]) < 20:
medium3_seq_results["precision"] += re["precision"]
medium3_seq_results["recall"] += re["recall"]
medium3_seq_results["ndcg"] += re["ndcg"]
medium3_seq_results["hit_ratio"] += re["hit_ratio"]
medium3_seq_results["auc"] += re["auc"]
medium3_seq_results["mrr"] += re["mrr"]
num_medium3_seqs += 1
if len(train[result_user]) > 7 and len(train[result_user]) < 20:
medium7_seq_results["precision"] += re["precision"]
medium7_seq_results["recall"] += re["recall"]
medium7_seq_results["ndcg"] += re["ndcg"]
medium7_seq_results["hit_ratio"] += re["hit_ratio"]
medium7_seq_results["auc"] += re["auc"]
medium7_seq_results["mrr"] += re["mrr"]
num_medium7_seqs += 1
if len(train[result_user]) >= 20:
long_seq_results["precision"] += re["precision"]
long_seq_results["recall"] += re["recall"]
long_seq_results["ndcg"] += re["ndcg"]
long_seq_results["hit_ratio"] += re["hit_ratio"]
long_seq_results["auc"] += re["auc"]
long_seq_results["mrr"] += re["mrr"]
num_long_seqs += 1
results["precision"] /= len(test_user_set)
results["recall"] /= len(test_user_set)
results["ndcg"] /= len(test_user_set)
results["hit_ratio"] /= len(test_user_set)
results["auc"] /= len(test_user_set)
results["mrr"] /= len(test_user_set)
print(f"testing #of users: {len(test_user_set)}")
assert eval_num_users == len(test_user_set)
if num_short_seqs > 0:
short_seq_results["precision"] /= num_short_seqs
short_seq_results["recall"] /= num_short_seqs
short_seq_results["ndcg"] /= num_short_seqs
short_seq_results["hit_ratio"] /= num_short_seqs
short_seq_results["auc"] /= num_short_seqs
short_seq_results["mrr"] /= num_short_seqs
print(f"testing #of short seq users with less than 3 training points: {num_short_seqs}")
if num_short7_seqs > 0:
short7_seq_results["precision"] /= num_short7_seqs
short7_seq_results["recall"] /= num_short7_seqs
short7_seq_results["ndcg"] /= num_short7_seqs
short7_seq_results["hit_ratio"] /= num_short7_seqs
short7_seq_results["auc"] /= num_short7_seqs
short7_seq_results["mrr"] /= num_short7_seqs
print(f"testing #of short seq users with less than 7 training points: {num_short7_seqs}")
if num_short37_seqs > 0:
short37_seq_results["precision"] /= num_short37_seqs
short37_seq_results["recall"] /= num_short37_seqs
short37_seq_results["ndcg"] /= num_short37_seqs
short37_seq_results["hit_ratio"] /= num_short37_seqs
short37_seq_results["auc"] /= num_short37_seqs
short37_seq_results["mrr"] /= num_short37_seqs
print(f"testing #of short seq users with 3 - 7 training points: {num_short37_seqs}")
if num_medium3_seqs > 0:
medium3_seq_results["precision"] /= num_medium3_seqs
medium3_seq_results["recall"] /= num_medium3_seqs
medium3_seq_results["ndcg"] /= num_medium3_seqs
medium3_seq_results["hit_ratio"] /= num_medium3_seqs
medium3_seq_results["auc"] /= num_medium3_seqs
medium3_seq_results["mrr"] /= num_medium3_seqs
print(f"testing #of short seq users with medium3 training points: {num_medium3_seqs}")
if num_medium7_seqs > 0:
medium7_seq_results["precision"] /= num_medium7_seqs
medium7_seq_results["recall"] /= num_medium7_seqs
medium7_seq_results["ndcg"] /= num_medium7_seqs
medium7_seq_results["hit_ratio"] /= num_medium7_seqs
medium7_seq_results["auc"] /= num_medium7_seqs
medium7_seq_results["mrr"] /= num_medium7_seqs
print(f"testing #of short seq users with medium7 training points: {num_medium7_seqs}")
if num_long_seqs > 0:
long_seq_results["precision"] /= num_long_seqs
long_seq_results["recall"] /= num_long_seqs
long_seq_results["ndcg"] /= num_long_seqs
long_seq_results["hit_ratio"] /= num_long_seqs
long_seq_results["auc"] /= num_long_seqs
long_seq_results["mrr"] /= num_long_seqs
print(f"testing #of short seq users with >= 20 training points: {num_long_seqs}")
test_num_items_in_intervals = []
interval_results = [{'recall': np.zeros(len(Ks)), 'ndcg': np.zeros(len(Ks))} for _ in range(len(items_in_freqintervals))]
all_freq_all_ranks = []
all_ks = []
all_numtestitems = []
all_freq_ind = []
for freq_ind, item_list in enumerate(items_in_freqintervals):
num_item_pos_interactions = 0
all_ranks = []
interval_items = []
for item in item_list:
pos_ranks_oneitem = all_pos_items_ranks.get(item, [])
if len(pos_ranks_oneitem) > 0:
interval_items.append(item)
all_ranks.extend(pos_ranks_oneitem)
for k_ind in range(len(Ks)):
all_ks.append(k_ind)
all_freq_all_ranks.append(all_ranks)
all_numtestitems.append(args.evalnegsample+1)
all_freq_ind.append(freq_ind)
test_num_items_in_intervals.append(interval_items)
item_eval_freq_data = zip(all_freq_all_ranks, all_ks, all_numtestitems, all_freq_ind)
batch_item_result = pool.map(eval_one_setitems, item_eval_freq_data)
for oneresult in batch_item_result:
result_dict = oneresult[0]
k_ind = oneresult[1]
freq_ind = oneresult[2]
interval_results[freq_ind]['recall'][k_ind] = result_dict['recall']
interval_results[freq_ind]['ndcg'][k_ind] = result_dict['ndcg']
item_freq = freq_quantiles
for i in range(len(item_freq)+1):
if i == 0:
print('For items in freq between 0 - %d with %d items: ' % (item_freq[i], len(test_num_items_in_intervals[i])))
elif i == len(item_freq):
print('For items in freq between %d - max with %d items: ' % (item_freq[i-1], len(test_num_items_in_intervals[i])))
else:
print('For items in freq between %d - %d with %d items: ' % (item_freq[i-1], item_freq[i], len(test_num_items_in_intervals[i])))
for k_ind in range(len(Ks)):
k = Ks[k_ind]
print('Recall@%d:%.6f, NDCG@%d:%.6f'%(k, interval_results[i]['recall'][k_ind], k, interval_results[i]['ndcg'][k_ind]))
return results, short_seq_results, short7_seq_results, short37_seq_results, medium3_seq_results, medium7_seq_results, long_seq_results, all_predictions_results_output