-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_image_generator.py
562 lines (503 loc) · 26.7 KB
/
train_image_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
##
from model.generator import Sg2ImModel
from model.discriminators import PatchDiscriminator, AcCropDiscriminator
from model.losses import get_gan_losses
from model.utils import int_tuple, float_tuple, str_tuple
from model.utils import timeit, bool_flag, LossManager
from model.metrics import jaccard
from data.crohme import CROHMELabelGraphDataset, crohme_collate_fn
from data import imagenet_deprocess_batch
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
import os
import json
import random
import argparse
import math
import numpy as np
import itertools
from collections import defaultdict
import torchvision.transforms as transforms
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='crohme', choices=['vg', 'coco', 'crohme'])
# Optimization hyperparameters
parser.add_argument('--batch_size', default=8, type=int)
parser.add_argument('--num_iterations', default=10000000, type=int)
parser.add_argument('--learning_rate', default=1e-4, type=float)
# Switch the generator to eval mode after this many iterations
parser.add_argument('--eval_mode_after', default=100000, type=int)
# Dataset options common to both VG and COCO
parser.add_argument('--image_size', default='256,256', type=int_tuple)
parser.add_argument('--num_train_samples', default=None, type=int)
parser.add_argument('--num_val_samples', default=1024, type=int)
parser.add_argument('--shuffle_val', default=True, type=bool_flag)
parser.add_argument('--loader_num_workers', default=4, type=int)
parser.add_argument('--include_relationships', default=True, type=bool_flag)
# Generator options
parser.add_argument('--mask_size', default=16, type=int) # Set this to 0 to use no masks
parser.add_argument('--embedding_dim', default=128, type=int)
parser.add_argument('--gconv_dim', default=128, type=int)
parser.add_argument('--gconv_hidden_dim', default=512, type=int)
parser.add_argument('--gconv_num_layers', default=5, type=int)
parser.add_argument('--mlp_normalization', default='none', type=str)
parser.add_argument('--refinement_network_dims', default='1024,512,256,128,64', type=int_tuple)
parser.add_argument('--normalization', default='batch')
parser.add_argument('--activation', default='leakyrelu-0.2')
parser.add_argument('--layout_noise_dim', default=32, type=int)
parser.add_argument('--use_boxes_pred_after', default=-1, type=int)
# Generator losses
parser.add_argument('--mask_loss_weight', default=0, type=float)
parser.add_argument('--l1_pixel_loss_weight', default=1.0, type=float)
parser.add_argument('--bbox_pred_loss_weight', default=10, type=float)
parser.add_argument('--predicate_pred_loss_weight', default=0, type=float) # DEPRECATED
# Generic discriminator options
parser.add_argument('--discriminator_loss_weight', default=0.01, type=float)
parser.add_argument('--gan_loss_type', default='gan')
parser.add_argument('--d_clip', default=None, type=float)
parser.add_argument('--d_normalization', default='batch')
parser.add_argument('--d_padding', default='valid')
parser.add_argument('--d_activation', default='leakyrelu-0.2')
# Object discriminator
parser.add_argument('--d_obj_arch',
default='C4-64-2,C4-128-2,C4-256-2')
parser.add_argument('--crop_size', default=32, type=int)
parser.add_argument('--d_obj_weight', default=1.0, type=float) # multiplied by d_loss_weight
parser.add_argument('--ac_loss_weight', default=0.1, type=float)
###
# Image discriminator
parser.add_argument('--d_img_arch',
default='C4-64-2,C4-128-2,C4-256-2')
parser.add_argument('--d_img_weight', default=1.0, type=float) # multiplied by d_loss_weight
# Output options
parser.add_argument('--print_every', default=10, type=int)
parser.add_argument('--timing', default=False, type=bool_flag)
parser.add_argument('--checkpoint_every', default=50000, type=int)
parser.add_argument('--save_img_every', default=5000, type=int)
parser.add_argument('--output_img_dir', default='./save_images', type=str, help='Directory to save the model weights')
# parser.add_argument('--output_dir', default=os.getcwd())
parser.add_argument('--output_dir', default='./save_model', type=str, help='Directory to save the model weights')
parser.add_argument('--checkpoint_name', default='layout_conv_sum2_new')
parser.add_argument('--checkpoint_start_from', default=None)
parser.add_argument('--restore_from_checkpoint', default=False, type=bool_flag)
CROHME_DIR = os.path.expanduser('/path/to/your')
class Trainer(object):
def __init__(self, args, device):
self.args = args
self.device = device
self.writer = SummaryWriter()
self.vocab, self.train_loader, self.val_loader = self._build_loaders()
self.generator, self.g_kwargs = self._build_generator(self.vocab)
self.generator.to(device)
self.optimizer = torch.optim.Adam(self.generator.parameters(), lr=args.learning_rate)
self.obj_discriminators, self.d_obj_kwargs = self._build_obj_discriminators(self.vocab)
self.img_discriminators, self.d_img_kwargs = self._build_img_discriminators(self.vocab)
self.g_loss_func, self.d_loss_func = get_gan_losses(args.gan_loss_type)
if self.obj_discriminators is not None:
for i in range(len(self.obj_discriminators)):
self.obj_discriminators[i].to(device)
self.obj_discriminators[i].train()
self.optimizer_d_obj = torch.optim.Adam(itertools.chain(*[d.parameters() for d in self.obj_discriminators]),
lr=args.learning_rate)
if self.img_discriminators is not None:
for i in range(len(self.img_discriminators)):
self.img_discriminators[i].to(device)
self.img_discriminators[i].train()
self.optimizer_d_img = torch.optim.Adam(itertools.chain(*[d.parameters() for d in self.img_discriminators]),
lr=args.learning_rate)
self.checkpoint = {
'args': args.__dict__,
'vocab': self.vocab,
'model_kwargs': self.g_kwargs,
'd_obj_kwargs': self.d_obj_kwargs,
'd_img_kwargs': self.d_img_kwargs,
'losses_ts': [],
'losses': defaultdict(list),
'd_losses': defaultdict(list),
'checkpoint_ts': [],
'train_batch_data': [],
'train_samples': [],
'train_iou': [],
'val_batch_data': [],
'val_samples': [],
'val_losses': defaultdict(list),
'val_iou': [],
'norm_d': [],
'norm_g': [],
'counters': {
't': None,
'epoch': None,
},
'model_state': None, 'model_best_state': None, 'optim_state': None,
'd_obj_state': None, 'd_obj_best_state': None, 'd_obj_optim_state': None,
'd_img_state': None, 'd_img_best_state': None, 'd_img_optim_state': None,
'best_t': [],
}
def train(self):
step = 0
for epoch in range(self.args.num_iterations):
for t, batch in enumerate(self.train_loader):
step += 1
if step == self.args.eval_mode_after:
print('switching to eval mode')
self.generator.eval()
self.optimizer = torch.optim.Adam(self.generator.parameters(), lr=self.args.learning_rate)
batch = [tensor.to(self.device) for tensor in batch]
imgs_64, imgs_128, imgs_256, lpls_256, latexcontent_256, objs, boxes, layout_matrix, triples, obj_to_img, triple_to_img = batch
imgs = [imgs_64, imgs_128, imgs_256]
predicates = triples[:, 1]
masks = None
with timeit('forward', self.args.timing):
model_boxes = boxes
model_masks = masks
model_out = self.generator(objs, triples, obj_to_img,
img = imgs_256, lpls=lpls_256, latexcontent=latexcontent_256,
boxes_gt=model_boxes, masks_gt=model_masks)
imgs_64_pred, imgs_128_pred, imgs_256_pred, \
boxes_pred, masks_pred, predicate_scores, layout_matrix_pred = model_out
imgs_pred = [imgs_64_pred, imgs_128_pred, imgs_256_pred]
with timeit('loss', self.args.timing):
# Skip the pixel loss if using GT boxes
skip_pixel_loss = (model_boxes is None)
total_loss, losses = calculate_model_losses(
self.args, skip_pixel_loss, imgs, imgs_pred,
boxes, boxes_pred, masks, masks_pred,
predicates, predicate_scores)
layout_loss = F.mse_loss(layout_matrix_pred, layout_matrix)
add_loss(total_loss, layout_loss, losses, 'layout_loss', 1)
if self.obj_discriminators is not None:
for i in range(len(imgs)):
scores_fake, ac_loss = self.obj_discriminators[i](imgs_pred[i], objs, boxes, obj_to_img)
total_loss = add_loss(total_loss, ac_loss, losses, 'ac_loss_%d' % i,
self.args.ac_loss_weight)
weight = self.args.discriminator_loss_weight * self.args.d_obj_weight
total_loss = add_loss(total_loss, self.g_loss_func(scores_fake), losses,
'g_gan_obj_loss_%d' % i, weight)
if self.img_discriminators is not None:
for i in range(len(imgs)):
scores_fake = self.img_discriminators[i](imgs_pred[i])
weight = self.args.discriminator_loss_weight * self.args.d_img_weight
total_loss = add_loss(total_loss, self.g_loss_func(scores_fake), losses,
'g_gan_img_loss_%d' % i, weight)
losses['total_loss'] = total_loss.item()
if not math.isfinite(losses['total_loss']):
print('WARNING: Got loss = NaN, not backpropping')
continue
self.optimizer.zero_grad()
with timeit('backward', self.args.timing):
total_loss.backward()
self.optimizer.step()
d_obj_losses, d_img_losses = None, None
if self.obj_discriminators is not None:
d_obj_losses = LossManager()
for i in range(len(imgs)):
imgs_fake = imgs_pred[i].detach()
scores_fake, ac_loss_fake = self.obj_discriminators[i](imgs_fake, objs, boxes, obj_to_img)
scores_real, ac_loss_real = self.obj_discriminators[i](imgs[i], objs, boxes, obj_to_img)
d_obj_gan_loss = self.d_loss_func(scores_real, scores_fake)
d_obj_losses.add_loss(d_obj_gan_loss, 'd_obj_gan_loss_%d' % i)
d_obj_losses.add_loss(ac_loss_real, 'd_ac_loss_real_%d' % i)
d_obj_losses.add_loss(ac_loss_fake, 'd_ac_loss_fake_%d' % i)
self.optimizer_d_obj.zero_grad()
d_obj_losses.total_loss.backward()
self.optimizer_d_obj.step()
if self.img_discriminators is not None:
d_img_losses = LossManager()
for i in range(len(imgs)):
imgs_fake = imgs_pred[i].detach()
scores_fake = self.img_discriminators[i](imgs_fake)
scores_real = self.img_discriminators[i](imgs[i])
d_img_gan_loss = self.d_loss_func(scores_real, scores_fake)
d_img_losses.add_loss(d_img_gan_loss, 'd_img_gan_loss_%d' % i)
self.optimizer_d_img.zero_grad()
d_img_losses.total_loss.backward()
self.optimizer_d_img.step()
if step % self.args.print_every == 0:
self._record(step, losses, d_obj_losses, d_img_losses)
if step % self.args.checkpoint_every == 0:
self._check(epoch, t, step)
if step % self.args.save_img_every == 0:
self._save_image(step, imgs_256[0], imgs_256_pred[0])
def _save_image(self, step, imgr, imgf):
os.makedirs(self.args.output_img_dir, exist_ok=True)
imgr_path = os.path.join(self.args.output_img_dir, 'image_step_%08d_r.png' % step)
imgf_path = os.path.join(self.args.output_img_dir, 'image_step_%08d_f.png' % step)
if isinstance(imgr, torch.Tensor):
imgr = imgr.detach().cpu()
imgr = transforms.ToPILImage()(imgr)
if isinstance(imgf, torch.Tensor):
imgf = imgf.detach().cpu()
imgf = transforms.ToPILImage()(imgf)
imgr.save(imgr_path)
imgf.save(imgf_path)
def _record(self, step, losses, d_obj_losses, d_img_losses):
print('t = %d / %d' % (step, self.args.num_iterations))
for tag, val in losses.items():
self.writer.add_scalar(tag, val, step)
self.checkpoint['losses'][tag].append(val)
print(' G [%s]: %.4f' % (tag, val))
if d_obj_losses is not None:
for tag, val in d_obj_losses.items():
self.writer.add_scalar(tag, val, step)
self.checkpoint['d_losses'][tag].append(val)
print(' D_obj [%s]: %.4f' % (tag, val))
if d_img_losses is not None:
for tag, val in d_img_losses.items():
self.writer.add_scalar(tag, val, step)
self.checkpoint['d_losses'][tag].append(val)
print(' D_img [%s]: %.4f' % (tag, val))
def _check(self, epoch, t, step=None):
print('checking on train')
train_results = self._check_model(self.train_loader)
t_losses, t_samples, t_batch_data, t_avg_iou = train_results
self.checkpoint['train_batch_data'].append(t_batch_data)
self.checkpoint['train_samples'].append(t_samples)
self.checkpoint['checkpoint_ts'].append(t)
self.checkpoint['train_iou'].append(t_avg_iou)
print('checking on val')
val_results = self._check_model(self.val_loader)
val_losses, val_samples, val_batch_data, val_avg_iou = val_results
self.checkpoint['val_samples'].append(val_samples)
self.checkpoint['val_batch_data'].append(val_batch_data)
self.checkpoint['val_iou'].append(val_avg_iou)
print('train iou: ', t_avg_iou)
print('val iou: ', val_avg_iou)
for k, v in val_losses.items():
self.checkpoint['val_losses'][k].append(v)
self.checkpoint['model_state'] = self.generator.state_dict()
self.checkpoint['optim_state'] = self.optimizer.state_dict()
if self.obj_discriminators is not None:
self.checkpoint['d_obj_state'] = [d.state_dict() for d in self.obj_discriminators]
self.checkpoint['d_obj_optim_state'] = self.optimizer_d_obj.state_dict()
if self.img_discriminators is not None:
self.checkpoint['d_img_state'] = [d.state_dict() for d in self.img_discriminators]
self.checkpoint['d_img_optim_state'] = self.optimizer_d_img.state_dict()
self.checkpoint['counters']['t'] = t
self.checkpoint['counters']['epoch'] = epoch
os.makedirs(self.args.output_dir, exist_ok=True)
# checkpoint_path = os.path.join(self.args.output_dir,
# '%s_with_model.pt' % self.args.checkpoint_name)
checkpoint_path = os.path.join(self.args.output_dir,
'%s_step_%08d_with_model.pt' % (self.args.checkpoint_name, step))
print('Saving checkpoint to ', checkpoint_path)
torch.save(self.checkpoint, checkpoint_path)
checkpoint_path = os.path.join(self.args.output_dir,
'%s_no_model.pt' % self.args.checkpoint_name)
key_blacklist = ['model_state', 'optim_state', 'model_best_state',
'd_obj_state', 'd_obj_optim_state', 'd_obj_best_state',
'd_img_state', 'd_img_optim_state', 'd_img_best_state']
small_checkpoint = {}
for k, v in self.checkpoint.items():
if k not in key_blacklist:
small_checkpoint[k] = v
torch.save(small_checkpoint, checkpoint_path)
def _check_model(self, loader):
num_samples = 0
all_losses = defaultdict(list)
total_iou = 0
total_boxes = 0
with torch.no_grad():
for batch in loader:
batch = [tensor.cuda() for tensor in batch]
masks = None
imgs_64, imgs_128, imgs_256, lpls_256, latexcontent_256, objs, boxes, layout_matrix, triples, obj_to_img, triple_to_img = batch
imgs = [imgs_64, imgs_128, imgs_256]
predicates = triples[:, 1]
# Run the model as it has been run during training
model_masks = masks
model_out = self.generator(objs, triples, obj_to_img,
img = imgs_256, lpls=lpls_256, latexcontent=latexcontent_256,
boxes_gt=boxes, masks_gt=model_masks)
imgs_64_pred, imgs_128_pred, imgs_256_pred, \
boxes_pred, masks_pred, predicate_scores, layout_matrix_pred = model_out
imgs_pred = [imgs_64_pred, imgs_128_pred, imgs_256_pred]
skip_pixel_loss = False
total_loss, losses = calculate_model_losses(
self.args, skip_pixel_loss, imgs, imgs_pred,
boxes, boxes_pred, masks, masks_pred,
predicates, predicate_scores)
layout_loss = F.mse_loss(layout_matrix_pred, layout_matrix)
add_loss(total_loss, layout_loss, losses, 'layout_loss', 1)
total_iou += jaccard(boxes_pred, boxes)
total_boxes += boxes_pred.size(0)
for loss_name, loss_val in losses.items():
all_losses[loss_name].append(loss_val)
num_samples += imgs[0].size(0)
if num_samples >= self.args.num_val_samples:
break
samples = {}
samples['gt_img'] = imgs[2]
model_out = self.generator(objs, triples, obj_to_img,
img = imgs_256, lpls=lpls_256, latexcontent=latexcontent_256,
boxes_gt=boxes, masks_gt=masks)
samples['gt_box_gt_mask'] = model_out[2]
model_out = self.generator(objs, triples, obj_to_img,
img = imgs_256, lpls=lpls_256, latexcontent=latexcontent_256,
boxes_gt=boxes)
samples['gt_box_pred_mask'] = model_out[2]
model_out = self.generator(objs, triples, obj_to_img,
img = imgs_256, lpls=lpls_256, latexcontent=latexcontent_256)
samples['pred_box_pred_mask'] = model_out[2]
for k, v in samples.items():
samples[k] = imagenet_deprocess_batch(v)
mean_losses = {k: np.mean(v) for k, v in all_losses.items()}
avg_iou = total_iou / total_boxes
masks_to_store = masks
if masks_to_store is not None:
masks_to_store = masks_to_store.data.cpu().clone()
masks_pred_to_store = masks_pred
if masks_pred_to_store is not None:
masks_pred_to_store = masks_pred_to_store.data.cpu().clone()
batch_data = {
'objs': objs.detach().cpu().clone(),
'boxes_gt': boxes.detach().cpu().clone(),
'masks_gt': masks_to_store,
'triples': triples.detach().cpu().clone(),
'obj_to_img': obj_to_img.detach().cpu().clone(),
'triple_to_img': triple_to_img.detach().cpu().clone(),
'boxes_pred': boxes_pred.detach().cpu().clone(),
'masks_pred': masks_pred_to_store
}
out = [mean_losses, samples, batch_data, avg_iou]
return tuple(out)
def _build_crohme_dsets(self):
with open(os.path.join(CROHME_DIR, 'vocab.json')) as f:
vocab = json.load(f)
nc = len(vocab['object_idx_to_name'])
npy_dir = os.path.join(CROHME_DIR, 'link_npy')
names = [name[:-4] for name in os.listdir(npy_dir)]
random.shuffle(names)
train_dset = CROHMELabelGraphDataset(CROHME_DIR, names[:-500], nc=nc, image_size=self.args.image_size)
val_dset = CROHMELabelGraphDataset(CROHME_DIR, names[-500:], nc=nc, image_size=self.args.image_size)
return vocab, train_dset, val_dset
def _build_loaders(self):
vocab, train_dset, val_dset = self._build_crohme_dsets()
collate_fn = crohme_collate_fn
loader_kwargs = {
'batch_size': self.args.batch_size,
'num_workers': self.args.loader_num_workers,
'shuffle': True,
'collate_fn': collate_fn,
}
train_loader = DataLoader(train_dset, **loader_kwargs)
loader_kwargs['shuffle'] = self.args.shuffle_val
val_loader = DataLoader(val_dset, **loader_kwargs)
return vocab, train_loader, val_loader
def _build_generator(self, vocab):
if self.args.checkpoint_start_from is not None:
checkpoint = torch.load(self.args.checkpoint_start_from)
kwargs = checkpoint['model_kwargs']
model = Sg2ImModel(**kwargs)
raw_state_dict = checkpoint['model_state']
state_dict = {}
for k, v in raw_state_dict.items():
if k.startswith('module.'):
k = k[7:]
state_dict[k] = v
model.load_state_dict(state_dict)
else:
kwargs = {
'vocab': vocab,
'image_size': self.args.image_size,
'embedding_dim': self.args.embedding_dim,
'gconv_dim': self.args.gconv_dim,
'gconv_hidden_dim': self.args.gconv_hidden_dim,
'gconv_num_layers': self.args.gconv_num_layers,
'mlp_normalization': self.args.mlp_normalization,
'refinement_dims': self.args.refinement_network_dims,
'normalization': self.args.normalization,
'activation': self.args.activation,
'mask_size': self.args.mask_size,
'layout_noise_dim': self.args.layout_noise_dim,
}
model = Sg2ImModel(**kwargs)
return model, kwargs
def _build_img_discriminators(self, vocab):
discriminators = None
d_kwargs = {}
d_weight = self.args.discriminator_loss_weight
d_img_weight = self.args.d_img_weight
if d_weight == 0 or d_img_weight == 0:
return discriminators, d_kwargs
d_kwargs = {
'arch': self.args.d_img_arch,
'normalization': self.args.d_normalization,
'activation': self.args.d_activation,
'padding': self.args.d_padding,
}
discriminators = [PatchDiscriminator(**d_kwargs),
PatchDiscriminator(**d_kwargs),
PatchDiscriminator(**d_kwargs)]
return discriminators, d_kwargs
def _build_obj_discriminators(self, vocab):
discriminators = None
d_kwargs = {}
d_weight = self.args.discriminator_loss_weight
d_obj_weight = self.args.d_obj_weight
if d_weight == 0 or d_obj_weight == 0:
return discriminators, d_kwargs
d_kwargs = {
'vocab': vocab,
'arch': self.args.d_obj_arch,
'normalization': self.args.d_normalization,
'activation': self.args.d_activation,
'padding': self.args.d_padding,
'object_size': self.args.crop_size,
}
discriminators = [AcCropDiscriminator(**d_kwargs),
AcCropDiscriminator(**d_kwargs),
AcCropDiscriminator(**d_kwargs)]
return discriminators, d_kwargs
def load(self, restore_path):
self.checkpoint = torch.load(restore_path)
self.generator.load_state_dict(self.checkpoint['model_state'])
self.generator.eval()
self.optimizer.load_state_dict(self.checkpoint['optim_state'])
for i in range(3):
self.obj_discriminators[i].load_state_dict(self.checkpoint['d_obj_state'][i])
self.optimizer_d_obj.load_state_dict(self.checkpoint['d_obj_optim_state'])
for i in range(3):
self.img_discriminators[i].load_state_dict(self.checkpoint['d_img_state'][i])
self.optimizer_d_img.load_state_dict(self.checkpoint['d_img_optim_state'])
print('load: %s' % restore_path)
def add_loss(total_loss, curr_loss, loss_dict, loss_name, weight=1):
curr_loss = curr_loss * weight
loss_dict[loss_name] = curr_loss.item()
if total_loss is not None:
total_loss += curr_loss
else:
total_loss = curr_loss
return total_loss
def calculate_model_losses(args, skip_pixel_loss, imgs, img_preds,
bbox, bbox_pred, masks, masks_pred,
predicates, predicate_scores):
total_loss = torch.zeros(1).to(imgs[0])
losses = {}
l1_pixel_weight = args.l1_pixel_loss_weight
if skip_pixel_loss:
l1_pixel_weight = 0
l1_pixel_loss = F.l1_loss(img_preds[0], imgs[0]) + \
F.l1_loss(img_preds[1], imgs[1]) + \
F.l1_loss(img_preds[2], imgs[2])
total_loss = add_loss(total_loss, l1_pixel_loss, losses, 'L1_pixel_loss',
l1_pixel_weight)
loss_bbox = F.mse_loss(bbox_pred, bbox)
total_loss = add_loss(total_loss, loss_bbox, losses, 'bbox_pred',
args.bbox_pred_loss_weight)
if args.predicate_pred_loss_weight > 0:
loss_predicate = F.cross_entropy(predicate_scores, predicates)
total_loss = add_loss(total_loss, loss_predicate, losses, 'predicate_pred',
args.predicate_pred_loss_weight)
if args.mask_loss_weight > 0 and masks is not None and masks_pred is not None:
mask_loss = F.binary_cross_entropy(masks_pred, masks.float())
total_loss = add_loss(total_loss, mask_loss, losses, 'mask_loss',
args.mask_loss_weight)
return total_loss, losses
if __name__ == '__main__':
torch.cuda.set_device(1)
args = parser.parse_args()
trainer = Trainer(args, 'cuda')
# trainer.load('layout_conv_sum2_new_with_model.pt')
trainer.train()