-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
293 lines (238 loc) · 13.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
from __future__ import absolute_import, division, print_function
import warnings
warnings.filterwarnings('ignore')
import argparse
import logging
import os
import random
from datetime import datetime
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset, Dataset)
from torch.utils.data.distributed import DistributedSampler
from copy import deepcopy as cp
from utils_superglue import (convert_examples_to_features,
output_modes, processors)
from utils_superglue import SUPERGLUE_TASKS_NUM_LABELS as label_nums
from models import FineTunedModel, TeacherImageModel
from trainer_superglue import trainer
import transformers
transformers.logging.set_verbosity_error()
from transformers import BertConfig, AutoModelForSequenceClassification, \
BertForSequenceClassification, BertTokenizer, \
AutoConfig, LlamaForCausalLM, LlamaTokenizer, GPTNeoModel, AutoTokenizer, AutoModel, \
OPTConfig, OPTModel, AutoModelForCausalLM
import wandb
logger = logging.getLogger(__name__)
MODEL_CLASSES = {
'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
'llama': (AutoConfig, LlamaForCausalLM, LlamaTokenizer),
'gpt': (AutoConfig, GPTNeoModel, AutoTokenizer),
'opt': (OPTConfig, OPTModel, AutoTokenizer),
'phi': (AutoConfig, AutoModelForCausalLM, AutoTokenizer),
'llm': (AutoConfig, AutoModelForCausalLM, AutoTokenizer),
'deberta': (AutoConfig, AutoModelForSequenceClassification, AutoTokenizer)
}
all_task_names = ['BOOLQ','CB','COPA','RTE','WIC','WSC']
class SimpleDataset(Dataset):
def __init__(self, x1, x2, x3, x4, x5, x6):
self.__iter = None
self.x1 = x1
self.x2 = x2
self.x3 = x3
self.x4 = x4
self.x5 = x5
def __len__(self):
return len(self.x1)
def __getitem__(self, key):
val = self.x1[key], self.x2[key], self.x3[key], self.x4[key], self.x5[key]
return val
class SimpleDataset2(Dataset):
def __init__(self, x1, x2, x3, x4, x5):
self.__iter = None
self.x1 = x1
self.x2 = x2
self.x3 = x3
self.x4 = x4
def __len__(self):
return len(self.x1)
def __getitem__(self, key):
val = self.x1[key], self.x2[key], self.x3[key], self.x4[key]
return val
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def load_and_cache_examples(args, task, tokenizer, evaluate=False, held=False, test=False):
processor = processors[task.lower()]()
output_mode = output_modes[task.lower()]
if task.lower() == 'mnli-mm':
task = 'MNLI'
data_dir = os.path.join(args.data_dir,task)
else:
data_dir = os.path.join(args.data_dir,task)
logger.info("Creating features from dataset file at %s", data_dir)
label_list = processor.get_labels()
if evaluate:
if test:
examples = processor.get_test_examples(data_dir)
else:
if held:
examples = processor.get_held_examples(data_dir)
else:
examples = processor.get_dev_examples(data_dir)
else:
examples = processor.get_train_examples(data_dir)
features = convert_examples_to_features(examples, label_list, args.max_seq_length,
tokenizer, output_mode,
cls_token_at_end=False,
cls_token=tokenizer.cls_token,
sep_token=tokenizer.sep_token,
cls_token_segment_id=1,
pad_on_left=tokenizer.padding_side == 'left',
pad_token_segment_id=0)
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
all_images = torch.tensor([f.image for f in features], dtype=torch.float)
all_texts = tokenizer.batch_decode(all_input_ids)
if test == False:
if output_mode == "classification":
all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long)
elif output_mode == "regression":
all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.float)
dataset = SimpleDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids, all_images, all_texts)
else:
dataset = SimpleDataset2(all_input_ids, all_input_mask, all_segment_ids, all_images, all_texts)
return dataset
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--task", default='COPA', type=str,
help="Model type selected in the list: " + ", ".join(all_task_names))
parser.add_argument("--data_dir", default='./glue_data/', type=str, required=False,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--model_type", default='bert', type=str,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--teacher_model", default="CompVis/stable-diffusion-v1-4", type=str,
help="Model with vision and text understanding")
parser.add_argument("--student_model", default="bert-base-uncased", type=str,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
parser.add_argument("--nlayers", default=6, type=int,
help="Number of encoder layers, in case the student model is not pretrained")
parser.add_argument("--nhid", default=768, type=int,
help="Hidden size of encoder, in case the student model is not pretrained")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--log_dir", default='logs', type=str, help="The log data dir.")
parser.add_argument("--output_dir", default='tmp/', type=str,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--alpha", default=0.5, type=float,
help="Train loss ratio.")
parser.add_argument("--lambda_", default=0.5, type=float,
help="Meta Train loss ratio.")
parser.add_argument("--beta", default=1.0, type=float,
help="Distillation loss ratio.")
parser.add_argument("--gamma", default=1.0, type=float,
help="Distillation loss ratio.")
parser.add_argument("--temperature", default=5.0, type=float,
help="Distillation temperature for soft target.")
parser.add_argument("--loss_type", default='cosine', type=str, help="The loss function - cosine or, euclidean")
parser.add_argument("--run_type", default='main', type=str, help="Type of run - main or ablation")
parser.add_argument("--teacher_learning_rate", default=0.001, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--learning_rate", default=2e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.01, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--warmup_steps", default=100, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument("--train_dataloader_size", default=8, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--val_dataloader_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--teacher_epochs", default=10, type=int,
help="Number of epochs.")
parser.add_argument("--epochs", default=10, type=int,
help="Number of epochs.")
parser.add_argument("--max_grad_norm", default=1, type=float,
help="Max gradient norm.")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument('--wandb_logging', action='store_true',
help='wandb logging needed')
parser.add_argument('--wandb_project_name', type=str, default='Vision-SuperGLUE Distillation', required=False,
help='wandb project name')
args = parser.parse_args()
args.teacher_save_path = os.path.join("output", args.task, "pytorch_model.bin")
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
tokenizer = tokenizer_class.from_pretrained(args.student_model, do_lower_case=args.do_lower_case)
if 'opt' in args.student_model:
tokenizer.cls_token = ''
tokenizer.sep_token = ''
args.n_gpu = 1
# Set seed
set_seed(args)
now = int(datetime.now().timestamp())
args.timestamp = now
task = args.task
task_loaders = {}
train_dataset = load_and_cache_examples(args, args.task, tokenizer, evaluate=False)
eval_dataset = load_and_cache_examples(args, args.task, tokenizer, evaluate=True)
test_dataset = load_and_cache_examples(args, args.task, tokenizer, evaluate=True, test=True)
print ("Number of test samples - {}".format(len(test_dataset)))
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
train_loader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_dataloader_size)
test_loader = DataLoader(test_dataset, batch_size=args.val_dataloader_size, shuffle=False)
eval_loader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.val_dataloader_size)
task_loaders = {'train': {'loader': train_loader, 'dataset': train_dataset}, \
'eval': {'loader': eval_loader, 'dataset': eval_dataset}, \
'test': {'loader': test_loader, 'dataset': test_dataset}, \
'num_labels': label_nums[args.task.lower()]}
if args.local_rank == -1:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args.n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
s_config = config_class.from_pretrained(args.student_model,
num_labels=label_nums[args.task.lower()], finetuning_task=args.task)
label_num = label_nums[args.task.lower()]
if args.nlayers != -1:
s_config.num_hidden_layers = args.nlayers
teacher_model = TeacherImageModel(label_num, device=device, d_model=args.nhid, model_id=args.teacher_model, \
dtype=torch.float32, dropout=0.1)
if args.model_type == 'llm':
student_model = FineTunedModel(label_num, s_config, d_model=args.nhid, \
pretrained_model_name=args.student_model, dropout=0.1, model_type='llm')
else:
student_model = FineTunedModel(label_num, s_config, d_model=args.nhid, \
pretrained_model_name=args.student_model, dropout=0.1)
print ("Number of parameters for student {}".format(sum(p.numel() for p in student_model.parameters() if p.requires_grad)))
print ("Number of parameters for teacher {}".format(sum(p.numel() for p in teacher_model.parameters() if p.requires_grad)))
if args.wandb_logging == True:
config = vars(args)
wandb.login()
wandb.init(project=args.wandb_project_name,config=config)
trainer(args, teacher_model, student_model, task_loaders, label_num, args.task)
if __name__ == "__main__":
main()