-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
286 lines (248 loc) · 8.57 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import os
import timm
import torch
import argparse
import torchvision
import torch.nn as nn
from methods import METHODS
import pytorch_lightning as pl
from metrics import EVALUATORS
from utilities import load_model
from utilities import load_dataset, load_normalize
from pytorch_lightning.profilers import SimpleProfiler
from utilities import parse_list, gen_seed, set_seed, merge_logs
from boostor import add_rela, get_prior_model, add_rand, prior_input_size_dict
def get_parser():
parser = argparse.ArgumentParser(
description="Setup for distributed and model training."
)
parser.add_argument(
"--method", type=str, default=None, help="Training method to use"
)
parser.add_argument("--dataset", type=str, default="None", help="Dataset to use")
parser.add_argument("--model", type=str, default="None", help="Model to use")
parser.add_argument(
"--epochs", type=int, default=100, help="Number of epochs to train"
)
parser.add_argument(
"--seed", type=str, default=None, help="Seed for random number generators"
)
parser.add_argument("--input_size", type=int, default=None, help="Image size")
parser.add_argument(
"--batch_size", type=int, default=None, help="Batch size for training"
)
parser.add_argument(
"--grad_accu", type=int, default=1, help="Accumulated steps for training"
)
parser.add_argument(
"--learning_rate", type=float, default=0.001, help="Learning rate"
)
parser.add_argument(
"--weight_decay", type=float, default=0.01, help="Weight decay rate"
)
parser.add_argument(
"--devices", type=parse_list, default=[0], help="List of device IDs"
)
parser.add_argument(
"--distributed",
type=bool,
default=False,
help="Use DistributedDataParallel (True)",
)
parser.add_argument(
"--num_workers", type=int, default=8, help="Number of worker threads"
)
parser.add_argument(
"--prefetch_factor", type=int, default=2, help="Number of prefetch factors"
)
# Task setup
parser.add_argument(
"--eval_tasks", type=parse_list, default=["linear"], help="Task for evaluation"
)
# Linear evaluation parameters
parser.add_argument(
"--logistic_batch_size", type=int, default=None, help="Batch size"
)
parser.add_argument(
"--logistic_epochs", type=int, default=100, help="Number of epochs"
)
# Segmentation evaluation parameters
parser.add_argument("--segment_batch_size", type=int, default=8, help="Batch size")
parser.add_argument(
"--segment_epochs", type=int, default=10, help="Number of epochs"
)
# ReLA parameters
parser.add_argument("--use_rela", type=str, default=None, help="Use ReLA or not")
parser.add_argument(
"--data_ratio", type=float, default=None, help="Data used ratio"
)
parser.add_argument(
"--rela_conlam", type=float, default=None, help="If using constant lambda"
)
return parser
def get_args(parser):
args = parser.parse_args()
if len(args.devices) >= 2:
args.distributed = True
else:
args.distributed = False
# Usual experimental settings
if args.dataset == "CIFAR10" or args.dataset == "CIFAR100":
if args.model.endswith("modified"):
args.input_size = 32
else:
args.input_size = 224
args.logistic_batch_size = 128
if args.batch_size is None:
args.batch_size = 128
elif args.dataset == "TinyImageNet":
if args.model.endswith("modified"):
args.input_size = 64
else:
args.input_size = 224
args.logistic_batch_size = 128
if args.batch_size is None:
args.batch_size = 128
elif args.dataset == "ImageNet-1K":
args.input_size = 224
args.logistic_batch_size = 1024
if args.batch_size is None:
args.batch_size = 512
elif args.dataset == "CelebA-HQ":
args.input_size = 224
args.logistic_batch_size = 128
if args.batch_size is None:
args.batch_size = 128
elif args.dataset == "ImageNet-21K":
args.input_size = 224
args.logistic_batch_size = 1024
if args.batch_size is None:
args.batch_size = 512
# ReLA parameters
if args.use_rela == "rand":
args.rela_model = args.model
args.rela_input_size = args.input_size
elif args.use_rela == "none":
pass
elif args.use_rela is not None:
args.rela_input_size = prior_input_size_dict[args.use_rela]
args.rela_data_path = f"./boostor/redata/{args.dataset}_{args.use_rela}.pth"
args.root_directory = f"./outputs/models/{parse_args(args)}"
return args
def parse_args(args):
params = ""
args_dict = vars(args)
for arg_name, arg_value in args_dict.items():
if arg_name in [
"method",
"batch_size",
"input_size",
"epochs",
"dataset",
"model",
"learning_rate",
"weight_decay",
"use_rela",
"rela_ratio",
"rela_conlam",
]:
params += f"{arg_value}_"
return params[:-1]
def main(args):
if args.seed is None:
args.seed = gen_seed(args.root_directory, randomly=False)
set_seed(args.seed)
METHOD, TRANSFORM = METHODS[args.method]
backbone, args.feature_dim = load_model(args.model, only_backbone=True)
transfrom = TRANSFORM(args.dataset, args.input_size)
train_dataset = load_dataset(
dataset=args.dataset,
transform=transfrom,
train=True,
)
if args.use_rela is not None:
os.makedirs("./boostor/redata", exist_ok=True)
if args.use_rela == "rand":
METHOD = add_rela(METHOD, train_dataset, backbone, args)
elif args.use_rela == "none":
METHOD = add_rand(METHOD, train_dataset, args)
else:
rela_model = get_prior_model(args.use_rela)
METHOD = add_rela(METHOD, train_dataset, rela_model, args)
else:
METHOD.dataset = train_dataset
args.nclass = train_dataset.nclass
model = METHOD(backbone, args)
val_transform = torchvision.transforms.Compose(
[
torchvision.transforms.Resize(args.input_size),
torchvision.transforms.CenterCrop(args.input_size),
torchvision.transforms.ToTensor(),
load_normalize("imagenet-1k"),
]
)
test_dataset = load_dataset(
dataset=args.dataset,
transform=val_transform,
train=False,
shuffle=False,
shuffle_in_class=False,
)
train_dataloader = torch.utils.data.DataLoader(
dataset=model.dataset,
batch_size=args.batch_size // len(args.devices) // args.grad_accu,
num_workers=args.num_workers,
prefetch_factor=args.prefetch_factor,
shuffle=True,
drop_last=True,
pin_memory=True,
)
val_dataloader = torch.utils.data.DataLoader(
dataset=test_dataset,
batch_size=args.batch_size // len(args.devices) // args.grad_accu * 4,
num_workers=args.num_workers,
prefetch_factor=args.prefetch_factor,
shuffle=True,
drop_last=False,
pin_memory=True,
)
profiler = SimpleProfiler(dirpath=args.save_directory, filename="log")
if args.distributed == False:
trainer = pl.Trainer(
max_epochs=args.epochs,
devices=args.devices,
accelerator="gpu",
precision=16,
logger=False,
enable_checkpointing=False,
accumulate_grad_batches=args.grad_accu,
enable_progress_bar=False,
profiler=profiler,
)
else:
trainer = pl.Trainer(
max_epochs=args.epochs,
devices=args.devices,
accelerator="gpu",
# strategy="ddp",
strategy="ddp_find_unused_parameters_true",
precision=16,
sync_batchnorm=True,
use_distributed_sampler=True,
logger=False,
enable_checkpointing=False,
accumulate_grad_batches=args.grad_accu,
enable_progress_bar=False,
profiler=profiler,
)
trainer.fit(
model=model, train_dataloaders=train_dataloader, val_dataloaders=val_dataloader
)
if trainer.global_rank == 0:
merge_logs(args)
# for eval_task in args.eval_tasks:
# evaluator = EVALUATORS[eval_task]
# evaluator(args)
if __name__ == "__main__":
args = get_args(get_parser())
main(args)