-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathProbMetrics_2.R
102 lines (90 loc) · 3.43 KB
/
ProbMetrics_2.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#-------------------------------- NOTE ----------------------------------------
# 1 This code is to evaluate probabilistic forecast accuracy;
# 2 The format of the input data is [Actual Forecast Q1 ... Q99];
# 3 Coder: Cong Feng Date: 2020/07/19 @ NREL
#--------------------------------------------------------------------------------
ProbMetrics_2 <- function(anly) {
library(scoringRules)
library(magrittr)
library(dplyr)
#anly <- df_last[,c('Actual', 'Forecast', paste0('Q', seq(1,99,by = 1)))]
# CRPS
stand_dev <- (anly[, 'Q99']-anly[, 'Q50'])/qnorm(.99)
stand_dev[stand_dev <= 0] <- 1e-10
CRPS_all <- scoringRules::crps.numeric(anly[, 'Actual'], family = 'norm', mean = anly[, 'Q50'],
sd = stand_dev)
nCRPS <- mean(CRPS_all)/max(anly$Actual)
# reliability
reliability <- rep(0,49)
#anly_day <- anly[anly$Actual != 0,]
#anly <- anly[anly$Actual != 0,]
anly[anly<0] <- 0
anly[anly > max(anly$Actual)] <- max(anly$Actual)
for (i in 1:49) {
lq <- 50 - 1*i
uq <- 50 + 1*i
forc_qt <- anly[, c(colnames(anly)[1],paste0('Q', c(lq, uq)))]
#forc_qt_day <- anly_day[, c(colnames(anly_day)[1],paste0('Q', c(lq, uq)))]
reliability[i] <- nrow(forc_qt[(forc_qt[,1] >= forc_qt[,2] & forc_qt[,1] <= forc_qt[,3]),])/nrow(anly)
}
# ACE
ACE <- mean(abs(seq(0.02, 0.98, 0.02) - reliability))
CE_98 <- .98 - reliability[length(reliability)]
#reliability[49] <- 1
# sharpness
sharpness <- rep(0,49)
for (i in 1:49) {
lq <- 50 - 1*i
uq <- 50 + 1*i
forc_qt <- anly[, c(paste0('Q', c(lq, uq)))]
sharpness[i] <- mean(anly[, paste0('Q', uq)] - anly[, paste0('Q', lq)])
}
# interval score
# interval score
IS_total <- rep(0,49)
for (no_int in 1:length(IS_total)) {
name_UB <- paste0('Q', no_int+50)
name_LB <- paste0('Q', -no_int+50)
UB <- anly[,name_UB]
LB <- anly[,name_LB]
I_sigma <- UB - LB
I_alpha <- (50-no_int)*0.02
y <- anly$Actual
IS <- rep(0, nrow(anly))
for (i in 1:nrow(anly)) {
if (y[i]<LB[i]) {
IS[i] <- -2*I_sigma[i]*I_alpha + 4*(LB[i]-y[i])
}
if (y[i]>UB[i]) {
IS[i] <- -2*I_sigma[i]*I_alpha + 4*(y[i]-UB[i])
}
if (y[i]<=UB[i]&y[i]>=LB[i]) {
IS[i] <- -2*I_sigma[i]*I_alpha
}
IS_total[no_int] <- mean(IS)
}
}
ave_IS <- mean(IS_total)
nave_IS <- mean(IS_total)/max(anly$Actual)
# pinball loss
z <- anly[,paste0('Q', seq(1, 99))]
m2 <- anly$Actual #observation
pinball_total <- rep(0,nrow(anly))
pb99 <- rep(0,99) #build a vector to save pinball loss
for (i in 1:nrow(anly)) {
for (j in 1:ncol(z)) {
if (((m2[i]-z[i,j])<0)) {
pb99[j] <- (1-j/100)*(z[i,j]-m2[i])
}else{pb99[j] <- (j/100)*(m2[i]-z[i,j])}
}
# print(sum(pb99))
pinball_total[i] <- sum(pb99)
}
pb_ave <- sum(pinball_total)/(nrow(anly)*ncol(z)) #calculate pinball loss metrics
npb_ave <- sum(pinball_total)/(nrow(anly)*ncol(z)*max(m2)) #calculate normalized pinball loss
#result <- as.matrix(cbind(nCRPS, pb_ave, npb_ave, ACE, CE_98, reliability, sharpness))
result <- list('nCRPS' = nCRPS, 'pb_ave' = pb_ave, 'npb_ave' = npb_ave,
'ACE' =ACE, 'CE_98' = CE_98, 'IS_ave'=ave_IS, 'IS_nave' = nave_IS, 'reliability' = reliability, 'sharpness' = sharpness)
#colnames(result) <- c('CRPS', 'PinballLoss')
return(result)
}