-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_game.py
135 lines (124 loc) · 5.8 KB
/
test_game.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import argparse
from random import random
from src.player import Player
from src.environment import Environment
from src.machine import Machine
from collections import deque
import time
import sys
import pygame
import numpy as np
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model-name', type=str, default='nnet3x3',
help='name of the model')
parser.add_argument('--model', type=str, default='nnet',
help='nnet or ai-engine')
parser.add_argument('--mode', type=str, default='test-model',
help='test-model or test-selfplay')
parser.add_argument('--height', type=int, default=3,
help='height of the board')
parser.add_argument('--width', type=int, default=3,
help='width of the board')
parser.add_argument('--show_screen', type=bool, default=True,
help='show the screen')
parser.add_argument('--speed', type=float, default=0,
help='speed of the game')
parser.add_argument('--n_in_rows', type=int, default=3,
help='number of consecutive stones in a row to win')
parser.add_argument('--_is_selfplay', type=bool, default=True,
help='if true, then self-play, else, then test')
parser.add_argument('--numIters', type=int, default=1000,
help='number of iterations')
parser.add_argument('--nCompare', type=int, default=50,
help='Number of games to play during arena play to determine if new net will be accepted.')
parser.add_argument('--load_model', type=bool, default=True,
help='Whether to load the pre-trained model.')
parser.add_argument('--train', action='store_true',
help='realtime training')
parser.add_argument('--load_folder_file', type=list, default=['trainned_models','nnet'],
help='(folder,file) to load the pre-trained model from.')
args = parser.parse_args()
args.model_name = args.load_folder_file[1] + str(args.height) + 'x' + str(args.width)
args.load_folder_file[1] = args.model_name + '.pt'
return args
def main():
args = parse_args()
env = Environment(args.height, args.width, args.show_screen,
n_in_rows=args.n_in_rows)
players = [Player(name=str(i)) for i in range(2)]
env.set_players(players, model_name=args.model_name)
machine = players[0]
if args.mode == 'test-model':
if args.model == 'nnet':
machine.load_model(folder=args.load_folder_file[0],
filename=args.load_folder_file[1])
# plot_elo(machine._elo)
elif args.model == 'ai-engine':
machine = Machine(env)
game_over = False
player = np.random.choice([0, 1])
board = env.get_new_board()
trainExamples = deque([], maxlen=200)
history = []
while True:
# Get action from player
x, y = None, None
if player == 1:
valids = env.get_valid_moves(board)
action = machine.get_action(board.get_state(), validMoves=valids, getBestMove=True)
action = env.convert_action_i2xy(action)
x, y = action
else:
events = pygame.event.get()
for event in events:
if event.type == pygame.QUIT:
if args.train:
players[0].save_model(folder=args.load_folder_file[0],
filename=args.load_folder_file[1])
sys.exit()
if event.type == pygame.MOUSEBUTTONDOWN:
mouseX = event.pos[1] # x
mouseY = event.pos[0] # y
x = int(mouseY // env.screen.SQUARE_SIZE)
y = int(mouseX // env.screen.SQUARE_SIZE)
pygame.event.clear()
if x is not None and y is not None and env.is_valid_move(board, x, y):
action = (x, y)
else:
continue
x, y = action
if args.train:
probs = np.zeros(board.get_state()[0].shape)
probs[x][y] = 1
sym_boards, sym_pis = env.get_symmetric(board, probs)
for sym_board, sym_pi in zip(sym_boards, sym_pis):
history.append([sym_board, sym_pi, action, player])
board = env.get_next_state(board, action, player, render=args.show_screen)
game_over, result = env.get_game_ended(board, env.convert_action_c2i(action))
if game_over:
if result == 1:
env.players[1 - player].score += 1
elif result == -1:
env.players[player].score += 1
for x in history:
if x[3] == player:
_board, pi, act, v = x[0], x[1], x[2], 1
else:
_board, pi, act, v = x[0], x[1], x[2], -1
if args.train:
trainExamples.append([_board.get_state(), pi, v])
if args.train:
players[0].learn(trainExamples, epochs=1, batch_size=len(trainExamples))
history = []
board = env.get_new_board()
time.sleep(1)
env.restart()
env.render()
player = np.random.choice([0, 1])
else:
player = 1 - player
else:
env.play()
if __name__ == "__main__":
main()