-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_model.py
executable file
·45 lines (37 loc) · 1.25 KB
/
test_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from numpy.__config__ import show
from src.environment import Environment
from src.utils import dotdict
from src.model import Policy
from models.SimpleNet import GomokuNet
from src.evaluate import Evaluation
from random import seed
def main():
args = dotdict({
'height': 5,
'width': 5,
"n_in_rows": 4,
'depth_minimax': 3,
'show_screen': True,
'speed': 0.5,
'num_iters': 1000,
'num_epochs': 50,
'nCompare': 100,
'mem_size': 10000,
'mode': 'test-machine',
'saved_model': False ,
'load_folder_file_1': ('Models','nnet5x5.pt'),
'load_folder_file_2': ('Models','rejected_nnet5x5.pt')
})
env = Environment(args)
nnet = GomokuNet(env)
nnet.load_checkpoint(args.load_folder_file_1[0], args.load_folder_file_1[1])
pnet = GomokuNet(env)
pnet.load_checkpoint(args.load_folder_file_2[0], args.load_folder_file_2[1])
print('OLD ELO: {} / {}'.format(nnet.elo, pnet.elo))
eval = Evaluation(env, nnet, pnet)
eval.run()
nwins, pwins, draws = eval.get_info()
print('NEW/PREV WINS : %d / %d ; DRAWS : %d' % (nwins, pwins, draws))
print('NEW ELO: {} / {}'.format(nnet.elo, pnet.elo))
if __name__ == "__main__":
main()