-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
268 lines (223 loc) · 9.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
ALLOW_MEMORY_GROWTH = True
if ALLOW_MEMORY_GROWTH:
# this needs to be instantiated before any file using tf
from allow_memory_growth import allow_memory_growth
allow_memory_growth()
import tensorflow as tf
from aster_ocr_utils.aster_inferer import AsterInferer
from config import cfg
from config.config import print_config
from dataset_utils.training_data_loader import TrainingDataLoader
from dataset_utils.validation_data_loader import ValidationDataLoader
from models.model_loader import ModelLoader
from training_step import TrainingStep
from utils import LossTracker, TensorboardWriter
from validation_step import ValidationStep
class Trainer(object):
"""Train the model. The different configs can be tuned in config/config."""
def __init__(self):
self.batch_size = cfg.batch_size
self.strategy = cfg.strategy
self.max_steps = cfg.max_steps
self.summary_steps_frequency = cfg.summary_steps_frequency
self.image_summary_step_frequency = cfg.image_summary_step_frequency
self.save_step_frequency = cfg.save_step_frequency
self.log_dir = cfg.log_dir
self.validation_step_frequency = cfg.validation_step_frequency
self.tensorboard_writer = TensorboardWriter(self.log_dir)
# set optimizer params
self.g_opt = self.update_optimizer_params(cfg.g_opt)
self.d_opt = self.update_optimizer_params(cfg.d_opt)
self.pl_mean = tf.Variable(
initial_value=0.0,
name="pl_mean",
trainable=False,
synchronization=tf.VariableSynchronization.ON_READ,
aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA,
)
self.training_data_loader = TrainingDataLoader()
self.validation_data_loader = ValidationDataLoader("validation_corpus.txt")
self.model_loader = ModelLoader()
# create model: model and optimizer must be created under `strategy.scope`
(
self.discriminator,
self.generator,
self.g_clone,
) = self.model_loader.initiate_models()
# set optimizers
self.d_optimizer = tf.keras.optimizers.Adam(
self.d_opt["learning_rate"],
beta_1=self.d_opt["beta1"],
beta_2=self.d_opt["beta2"],
epsilon=self.d_opt["epsilon"],
)
self.g_optimizer = tf.keras.optimizers.Adam(
self.g_opt["learning_rate"],
beta_1=self.g_opt["beta1"],
beta_2=self.g_opt["beta2"],
epsilon=self.g_opt["epsilon"],
)
self.ocr_optimizer = tf.keras.optimizers.Adam(
self.g_opt["learning_rate"],
beta_1=self.g_opt["beta1"],
beta_2=self.g_opt["beta2"],
epsilon=self.g_opt["epsilon"],
)
self.ocr_loss_weight = cfg.ocr_loss_weight
self.aster_ocr = AsterInferer()
self.training_step = TrainingStep(
self.generator,
self.discriminator,
self.aster_ocr,
self.g_optimizer,
self.ocr_optimizer,
self.d_optimizer,
self.g_opt["reg_interval"],
self.d_opt["reg_interval"],
self.pl_mean,
)
self.validation_step = ValidationStep(self.g_clone, self.aster_ocr)
self.manager = self.model_loader.load_checkpoint(
ckpt_kwargs={
"d_optimizer": self.d_optimizer,
"g_optimizer": self.g_optimizer,
"ocr_optimizer": self.ocr_optimizer,
"discriminator": self.discriminator,
"generator": self.generator,
"g_clone": self.g_clone,
"pl_mean": self.pl_mean,
},
model_description="Full model",
expect_partial=False,
ckpt_dir=cfg.ckpt_dir,
max_to_keep=cfg.num_ckpts_to_keep,
)
@staticmethod
def update_optimizer_params(params: dict):
"""
Updates the optimizer configurations.
Parameters
----------
params: Configs of the optimizer
Returns
-------
Updated configuration of the optimizer
"""
params_copy = params.copy()
mb_ratio = params_copy["reg_interval"] / (params_copy["reg_interval"] + 1)
params_copy["learning_rate"] = params_copy["learning_rate"] * mb_ratio
params_copy["beta1"] = params_copy["beta1"] ** mb_ratio
params_copy["beta2"] = params_copy["beta2"] ** mb_ratio
return params_copy
def train(self):
"""
Main training loop.
"""
train_dataset = self.training_data_loader.load_dataset(
batch_size=self.batch_size
)
train_dataset = self.strategy.experimental_distribute_dataset(train_dataset)
validation_dataset = self.validation_data_loader.load_dataset(
batch_size=self.batch_size
)
validation_dataset = self.strategy.experimental_distribute_dataset(
validation_dataset
)
# start actual training
print("Start Training")
# setup loss trackers
train_losses = [
"reg_g_loss",
"g_loss",
"pl_penalty",
"ocr_loss",
"reg_d_loss",
"d_loss",
"r1_penalty",
]
loss_trackers = [
LossTracker(train_losses, print_step, log_losses)
for print_step, log_losses in zip(
self.summary_steps_frequency["print_steps"],
self.summary_steps_frequency["log_losses"],
)
]
validation_tracker = LossTracker(["validation_ocr_loss"])
self.tensorboard_writer.log_config_file(
step=self.g_optimizer.iterations.numpy()
)
# start training
for real_images, ocr_image, input_words, ocr_labels in train_dataset:
step = self.g_optimizer.iterations.numpy()
# g train step
do_r1_reg = True if (step + 1) % self.d_opt["reg_interval"] == 0 else False
do_pl_reg = True if (step + 1) % self.g_opt["reg_interval"] == 0 else False
if (
step > 5000
): # Set the ocr_loss_weight (close) to 0 at the beginning of the training since it is too early
# to have a text to read from
ocr_loss_weight = self.ocr_loss_weight
else:
ocr_loss_weight = 1e-8
(gen_losses, disc_losses, ocr_loss,) = self.training_step.dist_train_step(
real_images,
ocr_image,
input_words,
ocr_labels,
do_r1_reg,
do_pl_reg,
ocr_loss_weight,
)
reg_g_loss, g_loss, pl_penalty = gen_losses
reg_d_loss, d_loss, r1_penalty = disc_losses
# update g_clone
self.g_clone.set_as_moving_average_of(self.generator)
# get current step
step = self.g_optimizer.iterations.numpy()
losses_dict = {
"reg_g_loss": reg_g_loss,
"g_loss": g_loss,
"pl_penalty": pl_penalty,
"ocr_loss": ocr_loss,
"reg_d_loss": reg_d_loss,
"d_loss": d_loss,
"r1_penalty": r1_penalty,
}
for loss_tracker in loss_trackers:
loss_tracker.increment_losses(losses_dict)
# save every self.save_step
if step % self.save_step_frequency == 0:
self.manager.save(checkpoint_number=step)
# save every self.image_summary_step
if step % self.image_summary_step_frequency == 0:
self.tensorboard_writer.log_images(
input_words, self.g_clone, self.aster_ocr, step
)
if step % self.validation_step_frequency == 0:
for input_words, ocr_labels in validation_dataset:
ocr_loss = self.validation_step.dist_validation_step(
input_words, ocr_labels
)
validation_tracker.increment_losses(
{"validation_ocr_loss": ocr_loss}
)
self.tensorboard_writer.log_scalars(validation_tracker.losses, step)
validation_tracker.print_losses(step)
validation_tracker.reinitialize_tracker()
# print every self.print_steps
for loss_tracker in loss_trackers:
if step % loss_tracker.print_step == 0:
loss_tracker.print_losses(step)
if loss_tracker.log_losses:
self.tensorboard_writer.log_scalars(loss_tracker.losses, step)
loss_tracker.reinitialize_tracker()
if step == self.max_steps:
break
# save last checkpoint
step = self.g_optimizer.iterations.numpy()
self.manager.save(checkpoint_number=step)
if __name__ == "__main__":
print_config(cfg)
with cfg.strategy.scope():
trainer = Trainer()
trainer.train()