-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcnn.py
89 lines (68 loc) · 2.9 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# encoding: utf-8
# CNN+softmax
import os, sys
sys.path.append(os.path.curdir)
import data
import tensorflow as tf
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='VALID')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])
x_image = tf.reshape(x, [-1,28,28,1]) # reshape
W_conv1 = weight_variable([5, 5, 1, 32]) # 第一层
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64]) # 第二层
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([4 * 4 * 64, 1024]) # 全连接1
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 4*4*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder("float") # dropout
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10]) # softmax
b_fc2 = bias_variable([10])
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv + 1e-10))
#train = tf.train.GradientDescentOptimizer(0.00001).minimize(cross_entropy)
train = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
sess.run(tf.global_variables_initializer())
print 'inited'
train_data = data.train_data()
BLOCK_SIZE = 400
BLOCK_NUM = len(train_data['train_imgs'])/BLOCK_SIZE
print 'started'
try:
for index in range(50000):
bindex = index%BLOCK_NUM
imgs = train_data['train_imgs'][bindex*BLOCK_SIZE: bindex*BLOCK_SIZE+BLOCK_SIZE]
labels = train_data['train_labels'][bindex*BLOCK_SIZE: bindex*BLOCK_SIZE+BLOCK_SIZE]
sess.run(train, feed_dict={x: imgs, y_: labels, keep_prob: 0.5})
if index % 100 == 0:
print 'A', index, sess.run(accuracy, feed_dict={x: train_data['test_imgs'], y_: train_data['test_labels'], keep_prob: 1.0})
except KeyboardInterrupt:
pass
print '\npredict'
test_data = data.test_data()
with open('cnn.csv', 'w') as f:
f.write('ImageId,Label\n')
for i in range(0, len(test_data['imgs']), BLOCK_SIZE):
print 'predict', i
imgs = test_data['imgs'][i:i+BLOCK_SIZE]
labels = sess.run(tf.argmax(y_conv, 1), feed_dict={x: imgs, keep_prob: 1.0})
for j in range(len(imgs)):
f.write('%d,%d\n' % (i+j+1, labels[j]))