-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhello.py
85 lines (61 loc) · 2.27 KB
/
hello.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
import imutils
import time
import cv2
import os
iconfidence = 0.5
ithreshold = 0.3
labelsPath = os.path.sep.join(["yolo-coco", "coco.names"])
LABELS = open(labelsPath).read().strip().split("\n")
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype="uint8")
weightsPath = os.path.sep.join(["yolo-coco", "yolov3.weights"])
configPath = os.path.sep.join(["yolo-coco", "yolov3.cfg"])
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
ln = net.getLayerNames()
ln = [ln[i[0]-1] for i in net.getUnconnectedOutLayers()]
vc = cv2.VideoCapture(0)
(W, H) = (None, None)
if imutils.is_cv2():
prop = cv2.cv.CV_CAP_PROP_FRAME_COUNT
while True:
(grabbed, frame) = vc.read()
if not grabbed:
break
if W is None or H is None:
(H, W) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(
frame, 1/255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
start = time.time()
layerOutputs = net.forward(ln)
end = time.time()
boxes = []
confidences = []
classIDs = []
for output in layerOutputs:
for detection in output:
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
if confidence > iconfidence:
box = detection[0:4]*np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype('int')
x = int(centerX-(width/2))
y = int(centerY-(height/2))
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
idxs = cv2.dnn.NMSBoxes(boxes, confidences, iconfidence, ithreshold)
if len(idxs) > 0:
for i in idxs.flatten():
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
color = [int(c) for c in COLORS[classIDs[i]]]
cv2.rectangle(frame, (x, y), (x+w, y+h), color, 2)
text = "{}:{:.4f}".format(LABELS[classIDs[i]], confidences[i])
cv2.putText(frame, text, (x, y-5),
cv2.FONT_HERSHEY_SCRIPT_SIMPLEX, 0.5, color, 2)
cv2.imshow("My App", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break