-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathNat.fm
201 lines (174 loc) · 4.28 KB
/
Nat.fm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
// Nat.fm
// ======
//
// Natural numbers.
import Bool
import Empty
import Equal
import Pair
import The
import Unit
// Definition
// ----------
T Nat
| zero
| succ(pred: Nat)
T Comparison
| less_than
| equal_to
| greater_than
// Functions
// ---------
// Predecessor
pred(n: Nat) : Nat
case n
| zero => zero
| succ => n.pred
// Copies a Nat
copy_nat(n: Nat) : Pair(Nat, Nat)
case n
| zero => pair(__ zero, zero)
| succ => case copy_nat(n.pred) as pred
| pair => pair(__ succ(pred.fst), succ(pred.snd))
// Addition
add(n: Nat, m: Nat) : Nat
case n
with m : Nat
| zero => m
| succ => case m
with n.pred : Nat
| zero => succ(n.pred)
| succ => succ(succ(add(n.pred, m.pred)))
// Left-hand addition
addl(n: Nat, m: Nat) : Nat
case n
with m : Nat
| zero => m
| succ => succ(addl(n.pred, m))
// Subtraction
sub(n: Nat, m: Nat) : Nat
case m
with n : Nat
| zero => n
| succ => case n
| zero => zero
| succ => sub(n.pred, m.pred)
// Multiplication by 2
double(n: Nat) : Nat
case n
| zero => zero
| succ => succ(succ(double(n.pred)))
// Helper for the multiplication below
mul.go(k: Nat, n: Nat, m: Nat) : Nat
let f = mul.go
case k
with n: Nat
with m: Nat
with f: Nat -> Nat -> Nat -> Nat
| zero => case m
| zero => zero
| succ => f(n, zero, m.pred)
| succ => succ(f(k.pred, succ(n), m))
// Multiplication
mul(n: Nat, m: Nat) : Nat
mul.go(zero, n, m)
// Comparison
nat_compare(n: Nat, m: Nat) : Comparison
case n
with m: Nat
| zero => case m
| zero => equal_to
| succ => less_than
| succ => case m
| zero => greater_than
| succ => nat_compare(n.pred, m.pred)
// Equality
nat_equal(n: Nat, m: Nat) : Bool
case nat_compare(n, m) as cmp
| less_than => false
| equal_to => true
| greater_than => false
// Theorems
// --------
// Proof that `1 != 0`
succ_isnt_zero(n : Nat;) : succ(n) != zero
let P = (n: Nat) =>
case n
| zero => Empty
| succ => Unit
(e) => unit :: rewrite P(.) with e
// Proof that `0 != 1`
zero_isnt_succ(n: Nat;): zero != succ(n)
let P = (n: Nat) =>
case n
| zero => Unit
| succ => Empty
(e) => unit :: rewrite P(.) with e
// Proof that `n == m` implies `succ(n) == succ(m)`
apply_succ(n: Nat; m; e: n == m) : succ(n) == succ(m)
apply(_____ e)
addl.succ(n: Nat, m: Nat) : succ(addl(n,m)) == addl(n,succ(m))
case n
with m : Nat
| zero => equal(__)
| succ => apply(____ succ; addl.succ(n.pred,m))
: succ(addl(n,m)) == addl(n,succ(m))
addl.commute(n: Nat, m: Nat) : addl(n,m) == addl(m,n)
case n
with m : Nat
| zero =>
case m
| zero => equal(__)
| succ => apply(____ succ; addl.commute(zero,m.pred))
: addl(zero,m) == addl(m,zero)
| succ =>
let e = apply(____ succ; addl.commute(n.pred,m))
rewrite(___ addl.succ(m,n.pred), Equal(Nat,addl(succ(n.pred),m)); e)
: addl(n,m) == addl(m,n)
add.commute(n: Nat, m: Nat) : add(n,m) == add(m,n)
case n
with m : Nat
| zero =>
case m
| zero => equal(__)
| succ => equal(__)
: add(zero,m) == add(m,zero)
| succ =>
case m
| zero => equal(__)
| succ => apply(____ (x) => succ(succ(x)); add.commute(n.pred,m.pred))
: add(succ(n.pred),m) == add(m,succ(n.pred))
: add(n,m) == add(m,n)
addl.succ_succ(n: Nat, m: Nat) : succ(succ(addl(n,m))) == addl(succ(n),succ(m))
case n
with m : Nat
| zero => equal(__)
| succ => apply(____ succ; addl.succ_succ(n.pred,m))
: succ(succ(addl(n,m))) == addl(succ(n),succ(m))
add.addl(n: Nat, m: Nat) : add(n,m) == addl(n,m)
case n
with m : Nat
| zero =>
case m
| zero => equal(__)
| succ => equal(__)
: add(zero,m) == addl(zero,m)
| succ =>
case m
| zero =>
let P = (x) => Equal(Nat,x,addl(zero,succ(n.pred)))
let e = rewrite(___ add.commute(zero,succ(n.pred)),P; equal(__))
let addl_zn = addl.commute(zero,succ(n.pred))
rewrite(___ addl_zn,Equal(Nat,add(succ(n.pred),zero)); e)
| succ =>
let e = apply(____ (x) => succ(succ(x)); add.addl(n.pred,m.pred))
let addl_ss = addl.succ_succ(n.pred,m.pred)
rewrite(___ addl_ss, Equal(Nat,succ(succ(add(n.pred,m.pred)))); e)
: add(succ(n.pred),m) == addl(succ(n.pred),m)
: add(n,m) == addl(n,m)
// Tests
// -----
nat.test0: The(Nat, 6n)
the(_ add(3n, 3n))
nat.test1: The(Nat, 6n)
the(_ mul(2n, 3n))