-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
158 lines (123 loc) · 7.2 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import argparse
import logging
import torch
import numpy as np
import random
from time import strftime, localtime
from torchvision import transforms
from models.unimo_model import UnimoModelF
from processor.dataset import MSDProcessor, MSDDataset
from modules.train import MSDTrainer
from torch.utils.data import DataLoader
from transformers import BertConfig, CLIPConfig, BertModel, CLIPProcessor, CLIPModel
import fitlog
import warnings
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
def set_seed(seed=2023):
"""set random seed"""
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
np.random.seed(seed)
random.seed(seed)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--bert_name', default='bert-base-uncased', type=str, help="Pretrained language model path")
# parser.add_argument("--vit_name", default="openai/clip-vit-base-patch32", type=str, help="The name of vit")
parser.add_argument("--vit_name", default="clip-vit-base-patch32", type=str, help="The name of vit")
parser.add_argument('--num_epochs', default=30, type=int, help="num training epochs")
parser.add_argument('--device', default='cuda', type=str, help="cuda or cpu")
parser.add_argument('--batch_size', default=32, type=int, help="batch size")
parser.add_argument('--lr', default=3e-5, type=float, help="learning rate")
parser.add_argument('--warmup_ratio', default=0.01, type=float)
parser.add_argument('--eval_begin_epoch', default=1, type=int, help="epoch to start evluate")
parser.add_argument('--seed', default=2023, type=int, help="random seed, default is 1")
parser.add_argument('--load_path', default=None, type=str, help="Load model from load_path")
parser.add_argument('--save_path', default='./output/', type=str, help="save best model at save_path")
parser.add_argument('--write_path', default=None, type=str,
help="do_test=True, predictions will be write in write_path")
parser.add_argument('--notes', default="", type=str, help="input some remarks for making save path dir.")
parser.add_argument('--do_train', action='store_true', default=True)
parser.add_argument('--only_test', action='store_true')
parser.add_argument('--max_seq', default=128, type=int)
parser.add_argument('--ignore_idx', default=0, type=int)
parser.add_argument('--sample_ratio', default=1.0, type=float, help="only for low resource.")
parser.add_argument('--alpha', default=0, type=float, help="CCR")
parser.add_argument('--margin', default=0.1, type=float, help="CCR")
parser.add_argument('--beta', default=0.1, type=float, help="SoftContrastiveLoss")
parser.add_argument('--mild_margin', default=0.7, type=float, help="SoftContrastiveLoss")
parser.add_argument('--hetero', default=0.9, type=float, help="SoftContrastiveLoss")
parser.add_argument('--homo', default=0.9, type=float, help="SoftContrastiveLoss")
parser.add_argument('--DR_step', default=3, type=int, help="Dynamic Route steps")
parser.add_argument('--weight_js_1', default=0.1, type=float, help="JS divergence")
parser.add_argument('--weight_js_2', default=0.1, type=float, help="JS divergence")
parser.add_argument('--weight_diff', default=0.1, type=float, help="diff_loss")
parser.add_argument('--embed_size', default=768, type=int, help='Dimensionality of the joint embedding.')
parser.add_argument('--num_head_IMRC', type=int, default=16, help='Number of heads in Intra-Modal Reasoning Cell')
parser.add_argument('--hid_IMRC', type=int, default=768,
help='Hidden size of FeedForward in Intra-Modal Reasoning Cell')
parser.add_argument('--raw_feature_norm_CMRC', default="clipped_l2norm",
help='clipped_l2norm|l2norm|clipped_l1norm|l1norm|no_norm|softmax')
parser.add_argument('--lambda_softmax_CMRC', default=4., type=float, help='Attention softmax temperature.')
parser.add_argument('--hid_router', type=int, default=768, help='Hidden size of MLP in routers')
args = parser.parse_args()
data_path = {
'train': 'data/MVSA-single/10-flod-1/train.json',
'dev': 'data/MVSA-single/10-flod-1/dev.json',
'test': 'data/MVSA-single/10-flod-1/test.json'
}
img_path = 'data/MVSA-single/MVSA_Single/data'
# data_path = {
# 'train': 'data/MVSA-multiple/10-flod-1/train.json',
# 'dev': 'data/MVSA-multiple/10-flod-1/dev.json',
# 'test': 'data/MVSA-multiple/10-flod-1/test.json'
# }
# img_path = 'data/MVSA-multiple/MVSA/data'
# data_path = {
# 'train': 'data/HFM/train.json',
# 'dev': 'data/HFM/valid.json',
# 'test': 'data/HFM/test.json'
# }
# img_path = 'data/HFM/dataset_image'
data_process, dataset_class = (MSDProcessor, MSDDataset)
set_seed(args.seed)
if args.save_path is not None: # make save_path dir
if not os.path.exists(args.save_path):
os.makedirs(args.save_path, exist_ok=True)
print(args)
# if not os.path.exists('./log'):
# os.makedirs('./log', mode=0o777)
# log_file = '{}-{}-{}.log'.format(args.bert_name, "sarcasm", strftime("%Y-%m-%d_%H:%M:%S", localtime()))
# logger.addHandler(logging.FileHandler("%s/%s" % ('./log', log_file)))
logger.info(args)
writer = None
if args.do_train:
clip_processor = CLIPProcessor.from_pretrained(args.vit_name)
clip_model = CLIPModel.from_pretrained(args.vit_name)
clip_vit = clip_model.vision_model
processor = data_process(data_path, args.bert_name, clip_processor=clip_processor)
train_dataset = MSDDataset(processor, img_path=img_path, max_seq=args.max_seq, mode="train")
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=16,
pin_memory=True)
dev_dataset = MSDDataset(processor, img_path=img_path, max_seq=args.max_seq, mode="dev")
dev_dataloader = DataLoader(dev_dataset, batch_size=args.batch_size, shuffle=False, num_workers=8,
pin_memory=True)
test_dataset = MSDDataset(processor, img_path=img_path, max_seq=args.max_seq, mode="test")
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=8,
pin_memory=True)
vision_config = CLIPConfig.from_pretrained(args.vit_name).vision_config
text_config = BertConfig.from_pretrained(args.bert_name)
model = UnimoModelF(args=args, vision_config=vision_config, text_config=text_config)
trainer = MSDTrainer(train_data=train_dataloader, dev_data=dev_dataloader, test_data=test_dataloader,
model=model, args=args, logger=logger, writer=writer)
bert = BertModel.from_pretrained(args.bert_name)
clip_model_dict = clip_vit.state_dict()
text_model_dict = bert.state_dict()
trainer.train(clip_model_dict, text_model_dict)
torch.cuda.empty_cache()
if __name__ == '__main__':
main()