Skip to content

Commit cdf1c1f

Browse files
committed
update repo links post migration vais-ral => TomographicImaging
1 parent e12261f commit cdf1c1f

File tree

4 files changed

+164
-165
lines changed

4 files changed

+164
-165
lines changed

Installation.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
In order to compile C/C++ sources and additional wrappers from source code for numpy 1.24 and python 3.10, the recommended way is:
66

77
```sh
8-
git clone https://github.com/vais-ral/CCPi-Regularisation-Toolkit
8+
git clone https://github.com/TomographicImaging/CCPi-Regularisation-Toolkit
99
cd CCPi-Regularisation-Toolkit
1010
export CCPI_BUILD_ARGS="--numpy 1.24 --python 3.10"
1111
build/jenkins-build.sh
@@ -36,7 +36,7 @@ Flags used during configuration
3636
Here an example of build on Linux (see also `run.sh` for additional info):
3737

3838
```sh
39-
git clone https://github.com/vais-ral/CCPi-Regularisation-Toolkit
39+
git clone https://github.com/TomographicImaging/CCPi-Regularisation-Toolkit
4040
cd CCPi-Regularisation-Toolkit
4141
cmake -S . -B ./build_proj -DBUILD_MATLAB_WRAPPER=ON -DBUILD_PYTHON_WRAPPER=ON -DBUILD_CUDA=ON -DCMAKE_INSTALL_PREFIX=./install
4242
cmake --build ./build_proj --target install
@@ -69,7 +69,7 @@ python demo_gpu_regularisers.py # to run GPU demo
6969
One can also use some of the GPU modules directly (i.e. without the need of building the package) by using [CuPy](https://docs.cupy.dev) implementations.
7070

7171
```sh
72-
pip install git+https://github.com/vais-ral/CCPi-Regularisation-Toolkit
72+
pip install git+https://github.com/TomographicImaging/CCPi-Regularisation-Toolkit
7373
```
7474

7575
> [!WARNING]

Readme.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@ Iterative image reconstruction (IIR) methods frequently require regularisation t
3737

3838
## Installation
3939

40-
The package comes as a [CMake](https://cmake.org) project and additional wrappers for Python and Matlab. Please see more detailed [Installation](https://github.com/vais-ral/CCPi-Regularisation-Toolkit/blob/master/Installation.md) information.
40+
The package comes as a [CMake](https://cmake.org) project and additional wrappers for Python and Matlab. Please see more detailed [Installation](./Installation.md) information.
4141

4242
### Python binaries
4343

@@ -55,7 +55,7 @@ One can also use some of the GPU modules with the provided [CuPy](https://docs.c
5555
conda install -c httomo ccpi-regularisation-cupy
5656
```
5757

58-
Once installed please see [Demos](https://github.com/vais-ral/CCPi-Regularisation-Toolkit/blob/master/demos/demo_gpu_regularisers3D_CuPy.py). Please note that not all modules are yet supported as this is an ongoing development. One can install both CuPy-driven and the `ccpi-regulariser` packge in one environment, but please be aware that the functions carry the identical names.
58+
Once installed please see [Demos](./demos/demo_gpu_regularisers3D_CuPy.py). Please note that not all modules are yet supported as this is an ongoing development. One can install both CuPy-driven and the `ccpi-regulariser` package in one environment, but please be aware that the functions carry the identical names.
5959

6060
## References
6161

demos/SoftwareX_supp/Readme.md

+5-6
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
# Software X journal publication supporting files
22

33
## Description:
4-
The scripts support [publication](https://github.com/vais-ral/CCPi-Regularisation-Toolkit/blob/master/demos/SoftwareX_supp/paper/1-s2.0-S2352711018301912-main.pdf) in Software X journal [1] to ensure reproducibility of the research. The scripts linked with the data which is shared at [Zenodo](https://doi.org/10.5281/zenodo.2578893).
4+
The scripts support [publication](./paper/1-s2.0-S2352711018301912-main.pdf) in Software X journal [1] to ensure reproducibility of the research. The scripts linked with the data which is shared at [Zenodo](https://doi.org/10.5281/zenodo.2578893).
55

66
## Data:
77
Data is shared at Zenodo [here](https://doi.org/10.5281/zenodo.2578893)
@@ -11,15 +11,14 @@ Data is shared at Zenodo [here](https://doi.org/10.5281/zenodo.2578893)
1111
2. [ToMoBAR](https://github.com/dkazanc/ToMoBAR): `conda install -c dkazanc tomobar`
1212
3. [Tomophantom](https://github.com/dkazanc/TomoPhantom): `conda install tomophantom -c ccpi`
1313

14-
## Files description:
14+
## Files description:
1515
- `Demo_SimulData_SX.py` - simulates 3D projection data using [Tomophantom](https://github.com/dkazanc/TomoPhantom) software. One can skip this module if the data is taken from [Zenodo](https://doi.org/10.5281/zenodo.2578893)
16-
- `Demo_SimulData_ParOptimis_SX.py` - runs computationally extensive calculations for optimal regularisation parameters, the result are saved into directory `optim_param`. This script can be also skipped.
16+
- `Demo_SimulData_ParOptimis_SX.py` - runs computationally extensive calculations for optimal regularisation parameters, the result are saved into directory `optim_param`. This script can be also skipped.
1717
- `Demo_SimulData_Recon_SX.py` - using established regularisation parameters, one runs iterative reconstruction
18-
- `Demo_RealData_Recon_SX.py` - runs real data reconstructions. Can be quite intense on memory so reduce the size of the reconstructed volume if needed.
18+
- `Demo_RealData_Recon_SX.py` - runs real data reconstructions. Can be quite intense on memory so reduce the size of the reconstructed volume if needed.
1919

2020
### References:
21-
[1] [Kazantsev, D., Pasca, E., Turner, M.J. and Withers, P.J., 2019. CCPi-Regularisation toolkit for computed tomographic image reconstruction with proximal splitting algorithms. SoftwareX, 9, pp.317-323.](https://www.sciencedirect.com/science/article/pii/S2352711018301912)
21+
[1] [Kazantsev, D., Pasca, E., Turner, M.J. and Withers, P.J., 2019. CCPi-Regularisation toolkit for computed tomographic image reconstruction with proximal splitting algorithms. SoftwareX, 9, pp.317-323.](https://www.sciencedirect.com/science/article/pii/S2352711018301912)
2222

2323
### Acknowledgments:
2424
CCPi-RGL software is a product of the [CCPi](https://www.ccpi.ac.uk/) group, STFC SCD software developers and Diamond Light Source (DLS). Any relevant questions/comments can be e-mailed to Daniil Kazantsev at dkazanc@hotmail.com
25-

0 commit comments

Comments
 (0)