-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_more.py
46 lines (34 loc) · 1.83 KB
/
train_more.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import keras
from keras.preprocessing.image import ImageDataGenerator
from keras.preprocessing import image
from keras.applications.mobilenet import preprocess_input
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Model
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint
train_datagen = ImageDataGenerator(rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory('cell_images/train',
target_size=(100,100),
batch_size=32,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory('cell_images/test',
target_size=(100,100),
batch_size=32,
class_mode='binary')
model = keras.models.load_model("model.h5")
#model.compile(optimizer = 'Adam',loss = 'binary_crossentropy',metrics = ['accuracy'])
#checkpoints = ModelCheckpoint("checkpoints/weights.{epoch:02d}.h5",
# save_weights_only = False,
# verbose = 1)
#step_size_train = train_generator.n//train_generator.batch_size
model.fit_generator(train_generator,
steps_per_epoch=8000,
epochs=5,
validation_data=validation_generator,
validation_steps=800)
#callbacks = [checkpoints])
model.save("model_2.h5")