-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
222 lines (177 loc) · 7.96 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import get_linear_schedule_with_warmup
import nltk.translate.bleu_score as bleu
from model.seq2seq import Seq2SeqBaseModel
from utils.args import getArgs
from utils.argsLM import getArgsLM
from utils.dataset import CustomDataset
from utils.process import encode, decode, getData
from utils.tools import getVocab
import torch.nn as nn
# 对联
args = getArgs()
# 古诗
# args = getArgsLM()
best_bleu = 0
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
word2id, id2word = getVocab(path="./resources/couplet/vocabs")
data = getData(dataPathIn='./resources/couplet/train/in.txt', dataPathOut='./resources/couplet/train/out.txt',
word2id=word2id, id2word=id2word)
dataDev = getData(dataPathIn='./resources/couplet/test/in.txt', dataPathOut='./resources/couplet/test/out.txt',
word2id=word2id, id2word=id2word)
# data = getData(dataPathIn='./resources/couplet/test/in.txt',dataPathOut='./resources/couplet/test/out.txt',word2id=word2id,id2word=id2word)
trainDataset = CustomDataset(data=data, word2id=word2id, id2word=id2word, device=device)
devDataset = CustomDataset(data=dataDev, word2id=word2id, id2word=id2word, device=device)
dataloader = DataLoader(trainDataset, batch_size=args.train_batch_size, shuffle=True,
collate_fn=trainDataset.collate_fn)
dataloaderDev = DataLoader(devDataset, batch_size=args.eval_batch_size, shuffle=False,
collate_fn=trainDataset.collate_fn)
model = Seq2SeqBaseModel(vocab_size=len(word2id), embedding_dim=args.embedding_dim, hidden_dim=args.hidden_dim,
num_layers=args.num_layers, dropout=args.dropout)
model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
scheduler = get_linear_schedule_with_warmup(optimizer, len(dataloader), args.num_train_epochs * len(dataloader))
class AverageMeter: # 为了tqdm实时显示loss和acc
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def train():
# config = Config("resources/couplet/chars_sort.txt")
global best_bleu
print("start training...")
for epoch in range(args.num_train_epochs):
model.train() # set mode to train
losses = AverageMeter()
clips = AverageMeter()
optimizer.zero_grad()
tk = tqdm(dataloader, total=len(dataloader), position=0, leave=True)
for data in tk:
# # input <s> 秦 川 雄 帝 宅 </s> -> [0 5 7 9 8 1]
# # input [<s> 秦 川 雄 帝 宅 </s>,<s> 绮 殿 千 寻 起</s>] -> [[0 5 7 9 8 1],[ 0 11 35 127 89 99 1 ]
#
# # decoder [ <s> 函 谷 壮 皇 居, <s> x x x x ] -> [[0 5 7 9 8],[ 0 11 35 127 89 99 1 ]
# # labels [ 函 谷 壮 皇 居 </s> , <s> x x x x ] -> [[0 5 7 9 8],[ 0 11 35 127 89 99 1 ]
# # input <s> 春天 </s> -> [0 5 7 9 8 1]
# decoder [ <s> 春 x x x x ,天 x x x x] -> [[0 5 7 9 8],[ 0 11 35 127 89 99 1 ]
# label [ 春 x x x x ,天 x x x x </s>] -> [[0 5 7 9 8],[ 0 11 35 127 89 99 1 ]
inputs, decoderInput, labels = data
logits, loss = model(inputs, decoderInput, labels)
losses.update(loss.item(), logits.size(0))
loss.backward()
clip = torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
clips.update(clip.item(), logits.size(0))
tk.set_postfix(loss=losses.avg, clips=clips.avg)
optimizer.step()
optimizer.zero_grad()
scheduler.step()
bleu_score = eval()
if bleu_score > best_bleu:
best_bleu = bleu_score
# torch.save(model.state_dict(),
# "bsz" + str(args.train_batch_size) + "ed" + str(args.embedding_dim) + "tb" + str(
# args.train_batch_size) + "hd" + str(args.hidden_dim) + "bs" + str(
# args.num_layers) + "lr" + str(args.learning_rate) + 'seq2seqPoem{}.pt'.format(best_bleu))
torch.save(model.state_dict(),
'seq2seqCouplet{}.pt'.format(best_bleu))
generate("你好")
generate("小王")
def generate(inputs=None):
model.eval()
with torch.no_grad():
if inputs == '' or inputs is None:
inputs = torch.tensor(encode("随机生成", word2id)).unsqueeze(dim=0).to(device)
predictList, prbList = model.generate(inputs, maxLen=64)
else:
inputs = torch.tensor(encode(inputs, word2id)).unsqueeze(dim=0).to(device)
predictList, prbList = model.generate(inputs, maxLen=64)
# print(predictList)
generateStr = decode(predictList, id2word)
# print(generateStr)
return generateStr
def generateCouplet(inputs):
model.eval()
with torch.no_grad():
inputs = torch.tensor(encode(inputs, word2id)).unsqueeze(dim=0).to(device)
predictList, prbList = model.generate(inputs, maxLen=64)
# print(predictList)
generateStr = decode(predictList, id2word)
# print(generateStr)
return generateStr
def eval():
model.eval()
bleu = AverageMeter()
optimizer.zero_grad()
tk = tqdm(dataloaderDev, total=len(dataloaderDev), position=0, leave=True)
with torch.no_grad():
for data in tqdm(tk):
inputs, decoderInput, labels = data
predictList, prbList = model.generate(inputs, maxLen=64)
predict = decode(predictList, id2word)
target = decode(labels.cpu().squeeze().tolist(), id2word)
print("----------")
print(predict)
print(target)
if len(predict) == 0:
bleu.update(0.0, inputs.shape[0])
else:
bleu.update(bleu_score(predict, target), inputs.shape[0])
tk.set_postfix(bleu=bleu.avg)
return bleu.avg
def bleu_score(predict, target):
predict = [item for item in predict]
target = [item for item in target]
return bleu.sentence_bleu(predict, target, weights=[1])
def generateTangshi():
result = []
last = ''
while len(result) < 8:
if len(result) % 2 == 0:
result.append(generate(last) + ',')
last = result[-1][:-1]
else:
result.append(generate(last) + '。')
last = result[-1][:-1]
for i in range(len(result)):
print(result[i])
def generateCangtou(begin_inputs="你", inputs="随机生成"):
model.eval()
with torch.no_grad():
inputs = torch.tensor(encode(inputs, word2id)).unsqueeze(dim=0).to(device)
predictList, prbList = model.generate(inputs, maxLen=64,
begin_inputs=torch.tensor([word2id[begin_inputs]]).unsqueeze(dim=0).to(
device))
# print(predictList)
generateStr = decode(predictList, id2word)
# print(generateStr)
return generateStr
def generateCangtouShi(begin_inputs="你好中国"):
result = []
last = '随机生成'
for i in range(len(begin_inputs)):
if len(result) % 2 == 0:
result.append(generateCangtou(inputs=last, begin_inputs=begin_inputs[i]) + ',')
last = result[-1][:-1]
else:
result.append(generateCangtou(inputs=last, begin_inputs=begin_inputs[i]) + '。')
last = result[-1][:-1]
for i in range(len(result)):
print(result[i])
if __name__ == "__main__":
#古诗
# model.load_state_dict(torch.load("./checkpoint/seq2seqLMpoem.pt", map_location=device))
# # 对联
model.load_state_dict(torch.load("./checkpoint/seq2seq0.25816018783153544.pt",map_location=device))
# generateTangshi()
# train()
pass