-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfine_tuning.py
321 lines (260 loc) · 13.2 KB
/
fine_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import torch
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader
from models import Uni_Sign
import utils as utils
from datasets import S2T_Dataset
import os
import time
import argparse, json, datetime
from pathlib import Path
import math
import sys
from timm.optim import create_optimizer
from models import get_requires_grad_dict
from SLRT_metrics import translation_performance, islr_performance, wer_list
from transformers import get_scheduler
from config import *
def main(args):
utils.init_distributed_mode_ds(args)
print(args)
utils.set_seed(args.seed)
print(f"Creating dataset:")
train_data = S2T_Dataset(path=train_label_paths[args.dataset],
args=args, phase='train')
print(train_data)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_data,shuffle=True)
train_dataloader = DataLoader(train_data,
batch_size=args.batch_size,
num_workers=args.num_workers,
collate_fn=train_data.collate_fn,
sampler=train_sampler,
pin_memory=args.pin_mem,
drop_last=True)
dev_data = S2T_Dataset(path=dev_label_paths[args.dataset],
args=args, phase='dev')
print(dev_data)
# dev_sampler = torch.utils.data.distributed.DistributedSampler(dev_data,shuffle=False)
dev_sampler = torch.utils.data.SequentialSampler(dev_data)
dev_dataloader = DataLoader(dev_data,
batch_size=args.batch_size,
num_workers=args.num_workers,
collate_fn=dev_data.collate_fn,
sampler=dev_sampler,
pin_memory=args.pin_mem)
test_data = S2T_Dataset(path=test_label_paths[args.dataset],
args=args, phase='test')
print(test_data)
# test_sampler = torch.utils.data.distributed.DistributedSampler(test_data,shuffle=False)
test_sampler = torch.utils.data.SequentialSampler(test_data)
test_dataloader = DataLoader(test_data,
batch_size=args.batch_size,
num_workers=args.num_workers,
collate_fn=test_data.collate_fn,
sampler=test_sampler,
pin_memory=args.pin_mem)
print(f"Creating model:")
model = Uni_Sign(
args=args
)
model.cuda()
model.train()
for name, param in model.named_parameters():
if param.requires_grad:
param.data = param.data.to(torch.float32)
if args.finetune != '':
print('***********************************')
print('Load Checkpoint...')
print('***********************************')
state_dict = torch.load(args.finetune, map_location='cpu')['model']
ret = model.load_state_dict(state_dict, strict=True)
print('Missing keys: \n', '\n'.join(ret.missing_keys))
print('Unexpected keys: \n', '\n'.join(ret.unexpected_keys))
model_without_ddp = model
if args.distributed:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
n_parameters = utils.count_parameters_in_MB(model_without_ddp)
print(f'number of params: {n_parameters}M')
optimizer = create_optimizer(args, model_without_ddp)
lr_scheduler = get_scheduler(
name='cosine',
optimizer=optimizer,
num_warmup_steps=int(args.warmup_epochs * len(train_dataloader)/args.gradient_accumulation_steps),
num_training_steps=int(args.epochs * len(train_dataloader)/args.gradient_accumulation_steps),
)
model, optimizer, lr_scheduler = utils.init_deepspeed(args, model, optimizer, lr_scheduler)
model_without_ddp = model.module.module
# print(model_without_ddp)
print(optimizer)
output_dir = Path(args.output_dir)
start_time = time.time()
max_accuracy = 0
if args.task == "CSLR":
max_accuracy = 1000
if args.eval:
if utils.is_main_process():
if args.task != "ISLR":
print("📄 dev result")
evaluate(args, dev_dataloader, model, model_without_ddp, phase='dev')
print("📄 test result")
evaluate(args, test_dataloader, model, model_without_ddp, phase='test')
return
print(f"Start training for {args.epochs} epochs")
for epoch in range(0, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
train_stats = train_one_epoch(args, model, train_dataloader, optimizer, epoch)
if args.output_dir:
checkpoint_paths = [output_dir / f'checkpoint_{epoch}.pth']
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': get_requires_grad_dict(model_without_ddp),
}, checkpoint_path)
# single gpu inference
if utils.is_main_process():
test_stats = evaluate(args, dev_dataloader, model, model_without_ddp, phase='dev')
evaluate(args, test_dataloader, model, model_without_ddp, phase='test')
if args.task == "SLT":
if max_accuracy < test_stats["bleu4"]:
max_accuracy = test_stats["bleu4"]
if args.output_dir and utils.is_main_process():
checkpoint_paths = [output_dir / 'best_checkpoint.pth']
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': get_requires_grad_dict(model_without_ddp),
}, checkpoint_path)
print(f"BLEU-4 of the network on the {len(dev_dataloader)} dev videos: {test_stats['bleu4']:.2f}")
print(f'Max BLEU-4: {max_accuracy:.2f}%')
elif args.task == "ISLR":
if max_accuracy < test_stats["top1_acc_pi"]:
max_accuracy = test_stats["top1_acc_pi"]
if args.output_dir and utils.is_main_process():
checkpoint_paths = [output_dir / 'best_checkpoint.pth']
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': get_requires_grad_dict(model_without_ddp),
}, checkpoint_path)
print(f"PI accuracy of the network on the {len(dev_dataloader)} dev videos: {test_stats['top1_acc_pi']:.2f}")
print(f'Max PI accuracy: {max_accuracy:.2f}%')
elif args.task == "CSLR":
if max_accuracy > test_stats["wer"]:
max_accuracy = test_stats["wer"]
if args.output_dir and utils.is_main_process():
checkpoint_paths = [output_dir / 'best_checkpoint.pth']
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': get_requires_grad_dict(model_without_ddp),
}, checkpoint_path)
print(f"WER of the network on the {len(dev_dataloader)} dev videos: {test_stats['wer']:.2f}")
print(f'Min WER: {max_accuracy:.2f}%')
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
def train_one_epoch(args, model, data_loader, optimizer, epoch):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}/{}]'.format(epoch, args.epochs)
print_freq = 10
optimizer.zero_grad()
target_dtype = None
if model.bfloat16_enabled():
target_dtype = torch.bfloat16
for step, (src_input, tgt_input) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
if target_dtype != None:
for key in src_input.keys():
if isinstance(src_input[key], torch.Tensor):
src_input[key] = src_input[key].to(target_dtype).cuda()
if args.task == "CSLR":
tgt_input['gt_sentence'] = tgt_input['gt_gloss']
stack_out = model(src_input, tgt_input)
total_loss = stack_out['loss']
model.backward(total_loss)
model.step()
loss_value = total_loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
metric_logger.update(loss=loss_value)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def evaluate(args, data_loader, model, model_without_ddp, phase):
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
target_dtype = None
if model.bfloat16_enabled():
target_dtype = torch.bfloat16
with torch.no_grad():
tgt_pres = []
tgt_refs = []
for step, (src_input, tgt_input) in enumerate(metric_logger.log_every(data_loader, 10, header)):
if target_dtype != None:
for key in src_input.keys():
if isinstance(src_input[key], torch.Tensor):
src_input[key] = src_input[key].to(target_dtype).cuda()
if args.task == "CSLR":
tgt_input['gt_sentence'] = tgt_input['gt_gloss']
stack_out = model(src_input, tgt_input)
total_loss = stack_out['loss']
metric_logger.update(loss=total_loss.item())
output = model_without_ddp.generate(stack_out,
max_new_tokens=100,
num_beams = 4,
)
for i in range(len(output)):
tgt_pres.append(output[i])
tgt_refs.append(tgt_input['gt_sentence'][i])
tokenizer = model_without_ddp.mt5_tokenizer
padding_value = tokenizer.eos_token_id
pad_tensor = torch.ones(150-len(tgt_pres[0])).cuda() * padding_value
tgt_pres[0] = torch.cat((tgt_pres[0],pad_tensor.long()),dim = 0)
tgt_pres = pad_sequence(tgt_pres,batch_first=True,padding_value=padding_value)
tgt_pres = tokenizer.batch_decode(tgt_pres, skip_special_tokens=True)
# fix mt5 tokenizer bug
if args.dataset == 'CSL_Daily' and args.task == "SLT":
tgt_pres = [' '.join(list(r.replace(" ",'').replace("\n",''))) for r in tgt_pres]
tgt_refs = [' '.join(list(r.replace(",", ',').replace("?","?").replace(" ",''))) for r in tgt_refs]
if args.task == "SLT":
bleu_dict, rouge_score = translation_performance(tgt_refs, tgt_pres)
for k,v in bleu_dict.items():
metric_logger.meters[k].update(v)
metric_logger.meters['rouge'].update(rouge_score)
elif args.task == "ISLR":
top1_acc_pi, top1_acc_pc = islr_performance(tgt_refs, tgt_pres)
metric_logger.meters['top1_acc_pi'].update(top1_acc_pi)
metric_logger.meters['top1_acc_pc'].update(top1_acc_pc)
elif args.task == "CSLR":
wer_results = wer_list(hypotheses=tgt_pres, references=tgt_refs)
print(wer_results)
for k,v in wer_results.items():
metric_logger.meters[k].update(v)
# # gather the stats from all processes
# metric_logger.synchronize_between_processes()
if utils.is_main_process() and utils.get_world_size() == 1 and args.eval:
with open(args.output_dir+f'/{phase}_tmp_pres.txt','w') as f:
for i in range(len(tgt_pres)):
f.write(tgt_pres[i]+'\n')
with open(args.output_dir+f'/{phase}_tmp_refs.txt','w') as f:
for i in range(len(tgt_refs)):
f.write(tgt_refs[i]+'\n')
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
if __name__ == '__main__':
os.environ["TOKENIZERS_PARALLELISM"] = "false"
parser = argparse.ArgumentParser('Uni-Sign scripts', parents=[utils.get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)