-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcorpus.py
125 lines (102 loc) · 3.3 KB
/
corpus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
#from itertools import izip
import re
# read and organize data
#3 2:3 4:5 5:3 --- document info (word: count)
class document:
''' the class for a single document '''
def __init__(self):
self.words = []
self.counts = []
self.length = 0
self.total = 0
class corpus:
''' the class for the whole corpus '''
def __init__(self):
self.size_vocab = 0
self.docs = []
self.num_docs = 0
def read_data(self, filename):
if not os.path.exists(filename):
print('no data file, please check it')
return
print('reading data from %s.' % filename)
for line in open(filename):
ss = line.strip().split()
if len(ss) == 0: continue
doc = document()
doc.length = int(ss[0])
doc.words = [0 for w in range(doc.length)]
doc.counts = [0 for w in range(doc.length)]
for w, pair in enumerate(re.finditer(r"(\d+):(\d+)", line)):
doc.words[w] = int(pair.group(1))
doc.counts[w] = int(pair.group(2))
doc.total = sum(doc.counts)
self.docs.append(doc)
if doc.length > 0:
max_word = max(doc.words)
if max_word >= self.size_vocab:
self.size_vocab = max_word + 1
if (len(self.docs) >= 10000):
break
self.num_docs = len(self.docs)
print("finished reading %d docs." % self.num_docs)
def read_stream_data(f, num_docs):
c = corpus()
splitexp = re.compile(r'[ :]')
for i in range(num_docs):
line = f.readline()
line = line.strip()
if len(line) == 0:
break
d = document()
splitline = [int(i) for i in splitexp.split(line)]
wordids = splitline[1::2]
wordcts = splitline[2::2]
d.words = wordids
d.counts = wordcts
d.total = sum(d.counts)
d.length = len(d.words)
c.docs.append(d)
c.num_docs = len(c.docs)
return c
# This version is about 33% faster
def read_data(filename):
c = corpus()
splitexp = re.compile(r'[ :]')
for line in open(filename):
d = document()
splitline = [int(i) for i in splitexp.split(line)]
wordids = splitline[1::2]
wordcts = splitline[2::2]
d.words = wordids
d.counts = wordcts
d.total = sum(d.counts)
d.length = len(d.words)
c.docs.append(d)
if d.length > 0:
max_word = max(d.words)
if max_word >= c.size_vocab:
c.size_vocab = max_word + 1
c.num_docs = len(c.docs)
return c
def count_tokens(filename):
num_tokens = 0
splitexp = re.compile(r'[ :]')
for line in open(filename):
splitline = [int(i) for i in splitexp.split(line)]
wordcts = splitline[2::2]
num_tokens += sum(wordcts)
return num_tokens
splitexp = re.compile(r'[ :]')
def parse_line(line):
line = line.strip()
d = document()
splitline = [int(i) for i in splitexp.split(line)]
wordids = splitline[1::2]
wordcts = splitline[2::2]
d.words = wordids
d.counts = wordcts
d.total = sum(d.counts)
d.length = len(d.words)
return d