-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer.py
43 lines (26 loc) · 932 Bytes
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from transformers import pipeline
from transformers import AutoTokenizer
from transformers import BertConfig, BertModel
import sys
checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
raw_inputs = [
"I've been waiting for a HuggingFace course my whole life.",
"I hate this so much!",
]
inputs = tokenizer(raw_inputs, padding=True, truncation=True, return_tensors="pt")
print(inputs)
config = BertConfig()
model = BertModel(config)
print(config)
model = BertModel.from_pretrained("bert-base-cased")
print(model)
## model.save_pretrained("/Users/ashkrit/_model")
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
sequence = "Using a Transformer network is simple"
tokens = tokenizer.tokenize(sequence)
print(tokens)
ids = tokenizer.convert_tokens_to_ids(tokens)
print(ids)
decoded_string = tokenizer.decode(ids)
print(decoded_string)