-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmlp.py
537 lines (443 loc) · 16.1 KB
/
mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
import numpy as np
def random_normal_weight_init(indim, outdim):
return np.random.normal(0,1,(indim, outdim))
def random_weight_init(indim,outdim):
b = np.sqrt(6)/np.sqrt(indim+outdim)
return np.random.uniform(-b,b,(indim, outdim))
def zeros_bias_init(outdim):
return np.zeros((outdim,1))
def labels2onehot(labels):
return np.array([[i==lab for i in range(10)]for lab in labels],dtype=np.float32)
class Transform:
"""
This is the base class. You do not need to change anything.
Read the comments in this class carefully.
"""
def __init__(self):
"""
Initialize any parameters
"""
pass
def forward(self, x):
"""
x should be passed as column vectors
"""
pass
def backward(self, grad_wrt_out):
"""
In this function, we accumulate the gradient values instead of assigning
the gradient values. This allows us to call forward and backward multiple
times while only update parameters once.
Compute and save the gradients wrt the parameters for step()
Return grad_wrt_x which will be the grad_wrt_out for previous Transform
"""
pass
def step(self):
"""
Apply gradients to update the parameters
"""
pass
def zerograd(self):
"""
This is used to Reset the gradients.
Usually called before backward()
"""
pass
class ReLU(Transform):
"""
relu(x) = max(x, 0)
"""
def __init__(self):
Transform.__init__(self)
def forward(self, x, train=True):
self.x = x
return np.maximum(x, 0)
def backward(self, grad_wrt_out):
# return np.maximum(grad_wrt_out, 0)
return grad_wrt_out * (self.x > 0)
class LinearMap(Transform):
"""
Implement this class
feel free to use random_xxx_init() functions given on top
"""
def __init__(self, indim, outdim, alpha=0, lr=0.01):
Transform.__init__(self)
"""
indim: input dimension
outdim: output dimension
alpha: parameter for momentum updates
lr: learning rate
"""
self.alpha = alpha
self.lr = lr
self.W = random_weight_init(indim, outdim) # test shape = (18, 100), (indim, outdim)
self.b = zeros_bias_init(outdim) # test shape = (100, 1), (outdim, 1)
self.indim = indim
self.outdim = outdim
self.x = None
self.forward_out = None
self.backward_out = None
self.w_gradient = np.zeros(self.W.shape)
self.b_gradient = 0.0
self.w_update = 0.0
self.b_update = 0.0
def forward(self, x):
"""
x shape (batch_size, indim) # test shape = (1, 18)
return shape (batch_size, outdim)
"""
self.x = x
self.forward_out = np.dot(x, self.W).T + self.b
return self.forward_out.T
def backward(self, grad_wrt_out):
"""
grad_wrt_out shape (batch_size, outdim)
return shape (batch_size, indim)
Your backward call should Accumulate gradients.
"""
self.w_gradient = np.matmul(self.x.T, grad_wrt_out) # (1, 18).T (1, 100)
self.b_gradient = np.sum(grad_wrt_out, axis=0).reshape(self.b.shape)
self.backward_out = np.dot(self.W, grad_wrt_out.T).T
return self.backward_out
def step(self):
"""
apply gradients calculated by backward() to update the parameters
Make sure your gradient step takes into account momentum.
Use alpha as the momentum parameter.
"""
self.w_update = self.alpha * self.w_update + self.w_gradient
self.W = self.W - self.lr * self.w_update
self.b_update = self.alpha * self.b_update + self.b_gradient
self.b = self.b - self.lr * self.b_update
def zerograd(self):
# reset parameters
self.w_gradient = np.zeros(self.W.shape)
self.b_gradient = 0.0
def getW(self):
# return weights
return self.W
def getb(self):
# return bias
return self.b
def loadparams(self, w, b):
# Used for Autograder. Do not change.
self.W, self.b = w, b
class SoftmaxCrossEntropyLoss:
"""
Implement this class
"""
def forward(self, logits, labels):
"""
logits are pre-softmax scores, labels are true labels of given inputs
labels are one-hot encoded
logits and labels are in the shape of (batch_size, num_classes)
returns loss as scalar
(your loss should be a mean value on batch_size)
"""
batch_size, _ = logits.shape
self.logits = logits
self.labels = labels
softmax = np.exp(logits) / np.sum(np.exp(logits), axis=1, keepdims=True)
loss = -1 * np.sum((labels * np.log(softmax)), axis=1)
self.derivative = (softmax - labels) / batch_size
return np.mean(loss)
def backward(self):
"""
return shape (batch_size, num_classes)
(don't forget to divide by batch_size because your loss is a mean)
"""
return self.derivative
def getAccu(self):
"""
return accuracy here (as you wish)
This part is not autograded.
"""
pass
class SingleLayerMLP(Transform):
"""
Implement this class
"""
def __init__(self, inp, outp, hiddenlayer=100, alpha=0.1, lr=0.01, batchnorm=False, dropout=False, p=0.5):
Transform.__init__(self)
self.inp = int(inp)
self.outp = int(outp)
self.hiddenlayer = int(hiddenlayer)
self.alpha = alpha
self.lr = lr
# Set to True for the required experiments
self.batchnorm = batchnorm
self.dropout = dropout
self.p = p
# Initialize network layers
# layer1 (input -> hidden) | [opt] dropout | ReLU | [opt] batchnorm | layer2 (hidden -> output)
self.layer1 = LinearMap(indim=inp, outdim=hiddenlayer, alpha=alpha, lr=lr)
self.drop1 = Dropout(p=p)
self.relu1 = ReLU()
self.bn1 = BatchNorm(indim=hiddenlayer, mm=alpha, lr=lr)
self.layer2 = LinearMap(indim=hiddenlayer, outdim=outp, alpha=alpha, lr=lr)
def forward(self, x, train=True):
# x shape (batch_size, indim)
self.x = x
# forward -> lm2(relu1(lm1(x)))
if self.batchnorm:
layer1_out = self.layer1.forward(x)
bn1_out = self.bn1.forward(layer1_out, train)
relu1_out = self.relu1.forward(bn1_out)
layer2_out = self.layer2.forward(relu1_out)
elif self.dropout:
layer1_out = self.layer1.forward(x)
drop1_out = self.drop1.forward(layer1_out, train)
relu1_out = self.relu1.forward(drop1_out)
layer2_out = self.layer2.forward(relu1_out)
else:
layer1_out = self.layer1.forward(x)
relu1_out = self.relu1.forward(layer1_out)
layer2_out = self.layer2.forward(relu1_out)
return layer2_out
def backward(self, grad_wrt_out):
# backward -> lm1(relu1(lm2(grad_wrt_out)))
if self.batchnorm:
layer2_grad = self.layer2.backward(grad_wrt_out)
relu1_grad = self.relu1.backward(layer2_grad)
bn1_grad = self.bn1.backward(relu1_grad)
layer1_grad = self.layer1.backward(bn1_grad)
elif self.dropout:
layer2_grad = self.layer2.backward(grad_wrt_out)
relu1_grad = self.relu1.backward(layer2_grad)
drop1_grad = self.drop1.backward(relu1_grad)
layer1_grad = self.layer1.backward(drop1_grad)
else:
layer2_grad = self.layer2.backward(grad_wrt_out)
relu1_grad = self.relu1.backward(layer2_grad)
layer1_grad = self.layer1.backward(relu1_grad)
return layer1_grad
def step(self):
self.layer1.step()
self.layer2.step()
# Update gamma and beta from BatchNorm
if self.batchnorm:
self.bn1.step()
def zerograd(self):
self.layer1.zerograd()
self.layer2.zerograd()
if self.batchnorm:
self.bn1.zerograd()
def loadparams(self, Ws, bs):
"""
use LinearMap.loadparams() to implement this
Ws is a list, whose element is weights array of a layer, first layer first
bs for bias similarly
e.g., Ws may be [layer1.W, layer2.W]
Used for autograder.
"""
W1, W2 = Ws
b1, b2 = bs
self.layer1.loadparams(W1, b1)
self.layer2.loadparams(W2, b2)
def getWs(self):
"""
Return the weights for each layer
You need to implement this.
Return weights for first layer then second and so on...
"""
return [self.layer1.getW(), self.layer2.getW()]
def getbs(self):
"""
Return the biases for each layer
You need to implement this.
Return bias for first layer then second and so on...
"""
return [self.layer1.getb(), self.layer2.getb()]
class TwoLayerMLP(Transform):
"""
Implement this class
Everything similar to SingleLayerMLP
"""
def __init__(self, inp, outp, hiddenlayers=[100,100], alpha=0.1, lr=0.01):
Transform.__init__(self)
self.inp = inp
self.outp = outp
self.h1, self.h2 = hiddenlayers
self.alpha = alpha
self.lr = lr
# Initialize network layers
# 1. LinearMap of input -> h1
# 2. ReLU()
# 3. LinearMap of h1 -> h2
# 4. ReLU()
# 5. LinearMap of h2 -> output
self.layer1 = LinearMap(inp, self.h1, alpha, lr)
self.relu1 = ReLU()
self.layer2 = LinearMap(self.h1, self.h2, alpha, lr)
self.relu2 = ReLU()
self.layer3 = LinearMap(self.h2, outp, alpha, lr)
def forward(self, x, train=True):
# x shape (batch_size, indim)
self.x = x
# forward -> lm3(relu2(lm2(relu1(lm1(x)))))
layer1_out = self.layer1.forward(x)
relu1_out = self.relu1.forward(layer1_out)
layer2_out = self.layer2.forward(relu1_out)
relu2_out = self.relu2.forward(layer2_out)
layer3_out = self.layer3.forward(relu2_out)
return layer3_out
def backward(self, grad_wrt_out):
# backward -> lm1(relu1(lm2(relu2(lm3(grad_wrt_out)))))
layer3_grad = self.layer3.backward(grad_wrt_out)
relu2_grad = self.relu2.backward(layer3_grad)
layer2_grad = self.layer2.backward(relu2_grad)
relu1_grad = self.relu1.backward(layer2_grad)
layer1_grad = self.layer1.backward(relu1_grad)
return layer1_grad
def step(self):
self.layer1.step()
self.layer2.step()
self.layer3.step()
def zerograd(self):
self.layer1.zerograd()
self.layer2.zerograd()
self.layer3.zerograd()
def loadparams(self, Ws, bs):
W1, W2, W3 = Ws
b1, b2, b3 = bs
self.layer1.loadparams(W1, b1)
self.layer2.loadparams(W2, b2)
self.layer3.loadparams(W3, b3)
def getWs(self):
return [self.layer1.getW(), self.layer2.getW(), self.layer3.getW()]
def getbs(self):
return [self.layer1.getb(), self.layer2.getb(), self.layer3.getb()]
class Dropout(Transform):
"""
Implement this class
"""
def __init__(self, p=0.5):
Transform.__init__(self)
"""
p is the Dropout probability
"""
self.p = p
def __call__(self, x):
return self.forward(x)
def forward(self, x, train=True):
"""
Get and apply a mask generated from np.random.binomial during training
Scale your output accordingly during testing
"""
self.x = x
if train:
self.mask = np.random.binomial(1, self.p, x.shape)
return self.x * self.mask
else:
return self.x * self.p
def backward(self, grad_wrt_out):
"""
This method is only called during training.
"""
return grad_wrt_out * self.mask
class BatchNorm(Transform):
"""
Implement this class
"""
def __init__(self, indim, alpha=0.9, lr=0.01, mm=0.01):
Transform.__init__(self)
"""
You shouldn't need to edit anything in init
"""
self.alpha = alpha # parameter for running average of mean and variance
self.eps = 1e-8
self.x = None
self.norm = None
self.out = None
self.lr = lr
self.mm = mm # parameter for updating gamma and beta
self.indim = indim
"""
The following attributes will be tested
"""
self.var = np.ones((1, indim))
self.mean = np.zeros((1, indim))
self.gamma = np.ones((1, indim))
self.beta = np.zeros((1, indim))
"""
gradient parameters
"""
self.dgamma = np.zeros_like(self.gamma)
self.dbeta = np.zeros_like(self.beta)
"""
momentum parameters
"""
self.mgamma = np.zeros_like(self.gamma)
self.mbeta = np.zeros_like(self.beta)
"""
inference parameters
"""
self.running_mean = np.zeros((1, indim))
self.running_var = np.ones((1, indim))
def __call__(self, x, train=True):
return self.forward(x, train)
def forward(self, x, train=True):
"""
x shape (batch_size, indim)
return shape (batch_size, indim)
"""
# Reference: https://agustinus.kristia.de/techblog/2016/07/04/batchnorm/
# My interpretation of batchnorm: https://drive.google.com/file/d/1dWtmgYXvCSV_b4zSIIFKGp29_h0Gna2Q/view?usp=sharing
self.x = x
if train:
self.mean = np.mean(self.x, axis=0)
self.var = np.var(self.x, axis=0)
ivar = 1.0 / np.sqrt(self.var + self.eps) # inverse variance
self.norm = (self.x - self.mean) * ivar
self.out = self.gamma * self.norm + self.beta
self.running_mean = self.alpha * self.running_mean + (1 - self.alpha) * self.mean
self.running_var = self.alpha * self.running_var + (1 - self.alpha) * self.var
else: # inference time
irvar = 1.0 / np.sqrt(self.running_var + self.eps) # inverse running variance
self.norm = (self.x - self.running_mean) * irvar
self.out = self.gamma * self.norm + self.beta
return self.out
def backward(self, grad_wrt_out):
"""
grad_wrt_out shape (batch_size, indim)
return shape (batch_size, indim)
"""
# Reference: https://agustinus.kristia.de/techblog/2016/07/04/batchnorm/
# My interpretation of batchnorm: https://drive.google.com/file/d/1dWtmgYXvCSV_b4zSIIFKGp29_h0Gna2Q/view?usp=sharing
norm = self.x - self.mean
ivar = 1.0 / np.sqrt(self.var + self.eps)
dnorm = grad_wrt_out * self.gamma
divar = np.sum(dnorm * norm, axis=0)
dvar = divar * -0.5 * ivar**3
dx_mean1 = (dnorm * ivar)
dx_mean2 = 2 * norm * 1.0/self.x.shape[0] * np.ones(self.x.shape) * dvar
dmean = -1 * np.sum(dx_mean1+dx_mean2, axis=0)
dx1 = dx_mean1 + dx_mean2
dx2 = dmean / self.x.shape[0]
dx = dx1 + dx2
self.dgamma = np.sum(grad_wrt_out * self.norm, axis=0)
self.dbeta = np.sum(grad_wrt_out, axis=0)
return dx
def step(self):
"""
apply gradients calculated by backward() to update the parameters
Make sure your gradient step takes into account momentum.
Use mm as the momentum parameter.
"""
self.mgamma = self.mm * self.mgamma + self.dgamma
self.gamma = self.gamma - self.lr * self.mgamma
self.mbeta = self.mm * self.mbeta + self.dbeta
self.beta = self.beta - self.lr * self.mbeta
def zerograd(self):
# reset parameters
self.gamma = np.ones((1, self.indim))
self.beta = np.zeros((1, self.indim))
def getgamma(self):
# return gamma
return self.gamma
def getbeta(self):
# return beta
return self.beta
def loadparams(self, gamma, beta):
# Used for Autograder. Do not change.
self.gamma, self.beta = gamma, beta