-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
643 lines (525 loc) · 30 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
import os
import sys
import math
import yaml
import argparse
import tqdm
import copy
import itertools
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
from accelerate import Accelerator
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from transformers import CLIPTextModel, CLIPTokenizer
from models.attn import AttentionStore
from datasets.base import CUBDataset, ImagenetDataset, SubDataset
from datasets.evaluation import Evaluator
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
DATASETS = dict(cub=CUBDataset, imagenet=ImagenetDataset)
OPTIMIZER = dict(AdamW=torch.optim.AdamW)
def set_env(benchmark=True):
# get config
parser = argparse.ArgumentParser(description=globals()["__doc__"])
parser.add_argument("--function", type=str, default="test", required=True)
parser.add_argument("--config", type=str, default="configs/cub.yml", help="Config file", required=True)
parser.add_argument("--opt", type=str, default="dict()", help="Override options.")
parser.add_argument("--seed", type=int, default=1234, help="Random seed")
args = parser.parse_args()
def load_yaml_conf(config):
def dict_fix(d):
for k, v in d.items():
if isinstance(v, dict):
v = dict_fix(v)
elif v == "None":
v = None
elif v == "False":
v = False
elif v == "True":
v = True
elif isinstance(v, str):
v = float(v) if v.isdigit() else v
d[k] = v
return d
assert os.path.exists(config), "ERROR: no config file found."
with open(config, "r") as f:
config = yaml.safe_load(f)
config = dict_fix(config)
return config
def format_conf(config):
if config["train"]["max_train_steps"] is None:
config["train"]["max_train_steps"] = 0
keep_class = config["data"]["keep_class"]
if keep_class is not None:
if isinstance(keep_class, int):
keep_class = [keep_class]
elif isinstance(keep_class, list) and len(keep_class)==2:
keep_class = list(range(keep_class[0], keep_class[1]+1))
else:
assert isinstance(keep_class, list)
data = dict(
train=dict(
batch_size=config["train"]["batch_size"],
shuffle=True,
dataset=dict(type=config["data"]["dataset"],
root=config["data"]["root"],
keep_class=keep_class,
crop_size=config["data"]["crop_size"],
resize_size=config["data"]["resize_size"],
load_pretrain_path=config["train"]["load_pretrain_path"],
load_token_path=config["train"]["load_token_path"],
save_path=config["train"]["save_path"],
),
),
test=dict(
batch_size=config["test"]["batch_size"],
shuffle=False,
dataset=dict(type=config["data"]["dataset"],
root=config["data"]["root"],
keep_class=keep_class,
crop_size=config["data"]["crop_size"],
resize_size=config["data"]["resize_size"],
load_pretrain_path=config["test"]["load_pretrain_path"],
load_class_path=config["test"]["load_class_path"],
load_token_path=config["test"]["load_token_path"],
),
),
)
optimizer = dict(
type="AdamW",
lr=config["train"]["learning_rate"],
betas=(config["train"]["adam_beta1"], config["train"]["adam_beta2"]),
weight_decay=eval(config["train"]["adam_weight_decay"]),
eps=eval(config["train"]["adam_epsilon"]),
)
lr_scheduler = dict(
type=config["train"]["lr_scheduler"],
num_warmup_steps=config["train"]["lr_warmup_steps"] * config["train"]["gradient_accumulation_steps"],
num_training_steps=config["train"]["max_train_steps"] * config["train"]["gradient_accumulation_steps"],
)
accelerator = dict(
# logging_dir=os.path.join(config["train"]["save_path"], "logs"),
gradient_accumulation_steps=config["train"]["gradient_accumulation_steps"],
mixed_precision="no",
log_with=None
)
model = dict(
)
train = dict(
epochs=config["train"]["num_train_epochs"],
scale_lr=config["train"]["scale_lr"],
push_to_hub=False,
save_path=config["train"]["save_path"],
save_step=config["train"]["save_steps"],
load_pretrain_path=config["train"]["load_pretrain_path"],
load_token_path=config["train"]["load_token_path"],
)
test = dict(
cam_thr=config["test"]["cam_thr"],
eval_mode=config["test"]["eval_mode"],
combine_ratio=config["test"]["combine_ratio"],
load_pretrain_path=config["test"]["load_pretrain_path"],
load_token_path=config["test"]["load_token_path"],
load_unet_path=config["test"]["load_unet_path"] if config["test"]["load_unet_path"] is not None else os.path.join(config["test"]["load_pretrain_path"], "unet"),
save_vis_path=config["test"]["save_vis_path"],
save_log_path=config["test"]["save_log_path"]
)
config = dict(
model=model,
data=data,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
accelerator=accelerator,
train=train,
test=test,
)
return config
def merge_conf(config, extra_config):
for key, value in extra_config.items():
if not isinstance(value, dict):
config[key] = value
else:
merge_value = merge_conf(config.get(key, dict()), value)
config[key] = merge_value
return config
# parse config file
config = load_yaml_conf(args.config)
# override options
extra_config = eval(args.opt)
merge_conf(config, extra_config)
config = format_conf(config)
# set random seed
if args.seed is not None:
set_seed(args.seed, device_specific=False)
# set benchmark
torch.backends.cudnn.benchmark = benchmark
return args, config
def test(config):
split = "test"
device = 'cuda'
torch_dtype = torch.float16
eval_mode = config["test"]["eval_mode"]
load_pretrain_path = config["test"]["load_pretrain_path"]
keep_class = config["data"][split]["dataset"]["keep_class"]
combine_ratio = config["test"]["combine_ratio"]
save_log_path = config["test"]["save_log_path"]
load_unet_path = config["test"]["load_unet_path"]
batch_size = config["data"][split]["batch_size"]
text_encoder = CLIPTextModel.from_pretrained(load_pretrain_path, subfolder="text_encoder").to(device)
vae = AutoencoderKL.from_pretrained(load_pretrain_path, subfolder="vae", torch_dtype=torch_dtype).to(device)
unet = UNet2DConditionModel.from_pretrained(load_unet_path, torch_dtype=torch_dtype).to(device)
noise_scheduler = DDPMScheduler.from_pretrained(load_pretrain_path, subfolder="scheduler")
data_configs = config["data"][split].copy()
dataset_config = data_configs.pop("dataset", None)
dataset_type = dataset_config.pop("type", "imagenet")
dataset_config.update(dict(
test_mode=(split == "val" or split == "test"),
text_encoder=text_encoder))
dataset = DATASETS[dataset_type](**dataset_config)
dataloader = torch.utils.data.DataLoader(dataset, **data_configs)
vae.eval()
unet.eval()
text_encoder.eval()
evaluator = Evaluator(logfile=save_log_path, len_dataloader=len(dataloader))
controller = AttentionStore(batch_size=batch_size)
AttentionStore.register_attention_control(controller, unet)
if keep_class is None:
keep_class = list(range(dataset.num_classes))
print(f"INFO: Test Save:\t [log: {str(config['test']['save_log_path'])}] [vis: {str(config['test']['save_vis_path'])}]", flush=True)
print(f"INFO: Test CheckPoint:\t [token: {str(config['test']['load_token_path'])}] [unet: {str(config['test']['load_unet_path'])}]", flush=True)
print(f"INFO: Test Class [{keep_class[0]}-{keep_class[-1]}]:\t [dataset: {dataset_type}] [eval mode: {eval_mode}] "
f"[cam thr: {config['test']['cam_thr']}] [combine ratio: {combine_ratio}]", flush=True)
for step, data in enumerate(tqdm.tqdm(dataloader)):
if eval_mode == "gtk":
image = data["img"].to(torch_dtype).to(device)
latents = vae.encode(image).latent_dist.sample().detach() * 0.18215
noise = torch.randn(latents.shape).to(latents.device)
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (latents.shape[0],), device=latents.device
).long()
representative_embeddings = [text_encoder(ids.to(device))[0] for ids in data["caption_ids_concept_token"][-1]]
representative_embeddings = sum(representative_embeddings)/len(data["caption_ids_concept_token"][-1])
discriminative_embeddings = [text_encoder(ids.to(device))[0] for ids in data["caption_ids_meta_token"][-1]]
discriminative_embeddings = sum(discriminative_embeddings) / len(data["caption_ids_meta_token"][-1])
combine_embeddings = combine_ratio * representative_embeddings + (1-combine_ratio) * discriminative_embeddings
combine_embeddings = combine_embeddings.to(torch_dtype)
for t in [0, 99]:
timesteps = torch.ones_like(timesteps) * t
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps).to(torch_dtype)
noise_pred = unet(noisy_latents, timesteps, combine_embeddings).sample
cams = controller.diffusion_cam(idx=5)
controller.reset()
cams_tensor = torch.from_numpy(cams).to(device).unsqueeze(dim=1)
pad_cams = cams_tensor.repeat(1, dataset.num_classes, 1, 1)
evaluator(data["img"], data["gt_labels"], data['gt_bboxes'], data["pred_logits"], pad_cams, data["name"], config, step)
elif eval_mode == "top1":
cams_all = []
image = data["img"].to(torch_dtype).to(device)
latents = vae.encode(image).latent_dist.sample().detach() * 0.18215
noise = torch.randn(latents.shape).to(latents.device)
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (latents.shape[0],), device=latents.device
).long()
for top_idx in [0, 5]:
# save inference cost
if top_idx == 5:
top1_idx = data["pred_top5_ids"][:, 0]
gtk_idx = torch.LongTensor(data["gt_labels"]).to(torch.int64)
if torch.all(top1_idx == gtk_idx):
cams_all = cams_all*2
break
representative_embeddings = [text_encoder(ids.to(device))[0] for ids in
data["caption_ids_concept_token"][top_idx]]
representative_embeddings = sum(representative_embeddings) / len(data["caption_ids_concept_token"][top_idx])
discriminative_embeddings = [text_encoder(ids.to(device))[0] for ids in
data["caption_ids_meta_token"][top_idx]]
discriminative_embeddings = sum(discriminative_embeddings) / len(data["caption_ids_meta_token"][top_idx])
combine_embeddings = combine_ratio * representative_embeddings + (
1 - combine_ratio) * discriminative_embeddings
combine_embeddings = combine_embeddings.to(torch_dtype)
for t in [0, 99]:
timesteps = torch.ones_like(timesteps) * t
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps).to(torch_dtype)
noise_pred = unet(noisy_latents, timesteps, combine_embeddings).sample
controller.batch_size = len(noise_pred)
cams = controller.diffusion_cam(idx=5)
controller.reset()
cams_all.append(cams)
cams_tensor = torch.from_numpy(cams_all[0]).to(device).unsqueeze(dim=1)
pad_cams = cams_tensor.repeat(1, dataset.num_classes, 1, 1)
for i, pad_cam in enumerate(pad_cams):
pad_cam[data["gt_labels"][i]] = torch.from_numpy(cams_all[-1])[i]
evaluator(data["img"], data["gt_labels"], data['gt_bboxes'], data["pred_logits"], pad_cams, data["name"], config, step)
elif eval_mode == "top5":
cams_all = []
image = data["img"].to(torch_dtype).to(device)
latents = vae.encode(image).latent_dist.sample().detach() * 0.18215
noise = torch.randn(latents.shape).to(latents.device)
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (latents.shape[0],), device=latents.device
).long()
for top_idx in range(6):
representative_embeddings = [text_encoder(ids.to(device))[0] for ids in
data["caption_ids_concept_token"][top_idx]]
representative_embeddings = sum(representative_embeddings) / len(data["caption_ids_concept_token"][top_idx])
discriminative_embeddings = [text_encoder(ids.to(device))[0] for ids in
data["caption_ids_meta_token"][top_idx]]
discriminative_embeddings = sum(discriminative_embeddings) / len(data["caption_ids_meta_token"][top_idx])
combine_embeddings = combine_ratio * representative_embeddings + (
1 - combine_ratio) * discriminative_embeddings
combine_embeddings = combine_embeddings.to(torch_dtype)
for t in [0, 99]:
timesteps = torch.ones_like(timesteps) * t
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps).to(torch_dtype)
noise_pred = unet(noisy_latents, timesteps, combine_embeddings).sample
cams = controller.diffusion_cam(idx=5)
controller.reset()
cams_all.append(cams)
cams = torch.from_numpy(np.stack([cam for cam in cams_all[:-1]], 1))
pad_cams = torch.zeros((batch_size, dataset.num_classes, *cams.shape[-2:]))
for i, pad_cam in enumerate(pad_cams):
pad_cam[data["pred_top5_ids"][i]] = cams[i]
pad_cam[data["gt_labels"][i]] = torch.from_numpy(cams_all[-1])[i]
evaluator(data["img"], data["gt_labels"], data['gt_bboxes'], data["pred_logits"], pad_cams, data["name"], config, step)
else:
raise ValueError("select eval_mode in [gtk, top1, top5].")
def train_token(config):
split = "train"
device = 'cuda'
torch_dtype = torch.float32
load_pretrain_path = config["train"]["load_pretrain_path"]
keep_class = config["data"][split]["dataset"]["keep_class"]
text_encoder = CLIPTextModel.from_pretrained(load_pretrain_path, subfolder="text_encoder", torch_dtype=torch_dtype)
vae = AutoencoderKL.from_pretrained(load_pretrain_path, subfolder="vae", torch_dtype=torch_dtype)
unet = UNet2DConditionModel.from_pretrained(load_pretrain_path, subfolder="unet", torch_dtype=torch_dtype)
noise_scheduler = DDPMScheduler.from_pretrained(load_pretrain_path, subfolder="scheduler")
def freeze_params(params):
for param in params:
param.requires_grad = False
freeze_params(itertools.chain(
vae.parameters(),
unet.parameters(),
text_encoder.text_model.encoder.parameters(),
text_encoder.text_model.final_layer_norm.parameters(),
text_encoder.text_model.embeddings.position_embedding.parameters(),
))
data_configs = config["data"][split].copy()
dataset_config = data_configs.pop("dataset", None)
dataset_type = dataset_config.pop("type", "imagenet")
dataset_config.update(dict(
test_mode=(split == "val" or split == "test"),
text_encoder=text_encoder))
dataset = DATASETS[dataset_type](**dataset_config)
def train_loop(config, class_id, text_encoder=None, unet=None, vae=None, dataset=None):
def get_grads_to_zero(class_id, dataset):
tokenizer = dataset.tokenizer
index_grads_to_zero = torch.ones((len(tokenizer))).bool()
concept_token = dataset.cat2tokens[class_id]["concept_token"]
token_id = tokenizer.encode(concept_token, add_special_tokens=False)[0]
index_grads_to_zero[token_id] = False
return index_grads_to_zero, token_id
index_grads_to_zero, token_id = get_grads_to_zero(class_id, dataset)
config = copy.deepcopy(config)
subdataset = SubDataset(keep_class=[class_id], dataset=dataset)
data_configs = config["data"][split].copy()
data_configs.pop("dataset", None)
dataloader = torch.utils.data.DataLoader(subdataset, **data_configs)
accelerator_config = config.get("accelerator", None)
accelerator = Accelerator(**accelerator_config)
if accelerator.is_main_process:
accelerator.init_trackers("wsol", config=config)
save_path = config['train']['save_path']
batch_size = config['data']['train']['batch_size']
gradient_accumulation_steps = config['accelerator']['gradient_accumulation_steps']
num_train_epochs = config['train']['epochs']
max_train_steps = config['lr_scheduler']['num_training_steps'] // gradient_accumulation_steps
total_batch_size = batch_size * accelerator.num_processes * gradient_accumulation_steps
if config['train']['scale_lr']:
config['optimizer']['lr'] = config['optimizer']['lr'] * total_batch_size
if (max_train_steps is None) or (max_train_steps == 0):
num_update_steps_per_epoch = math.ceil(len(dataloader) / gradient_accumulation_steps)
max_train_steps = num_train_epochs * num_update_steps_per_epoch // accelerator.num_processes
config['lr_scheduler']['num_training_steps'] = max_train_steps * gradient_accumulation_steps
optimizer_config = config.get("optimizer", None)
optimizer_type = optimizer_config.pop("type", "AdamW")
lr_scheduler_config = config.get("lr_scheduler", None)
lr_scheduler_type = lr_scheduler_config.pop("type", "constant")
optimizer = OPTIMIZER[optimizer_type](text_encoder.get_input_embeddings().parameters(), **optimizer_config)
lr_scheduler = get_scheduler(name=lr_scheduler_type, optimizer=optimizer, **lr_scheduler_config)
if accelerator.is_main_process:
print(f"INFO: Train Save:\t [ckpt: {save_path}]", flush=True)
print(f"INFO: Train Class [{class_id}]:\t [num samples: {len(dataloader)}] "
f"[num epochs: {num_train_epochs}] [batch size: {total_batch_size}] "
f"[total steps: {max_train_steps}]", flush=True)
vae, unet, text_encoder, optimizer, lr_scheduler, dataloader = accelerator.prepare(vae, unet, text_encoder,
optimizer, lr_scheduler,
dataloader)
vae.eval()
unet.eval()
global_step = 0
progress_bar = tqdm.tqdm(range(max_train_steps), disable=(not accelerator.is_local_main_process))
for epoch in range(num_train_epochs):
text_encoder.train()
progress_bar.set_description(f"Epoch[{epoch+1}/{num_train_epochs}] ")
for step, data in enumerate(dataloader):
with accelerator.accumulate(text_encoder):
combine_embeddings = text_encoder(data["caption_ids_concept_token"])[0]
image = data["img"].to(torch_dtype) # use torch.float16 rather than float32
latents = vae.encode(image).latent_dist.sample().detach() * 0.18215
noise = torch.randn(latents.shape, device=latents.device, dtype=torch_dtype)
timesteps = torch.randint(low=0, high=noise_scheduler.config.num_train_timesteps,
size=(latents.shape[0],), device=latents.device).long()
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
noise_pred = unet(noisy_latents, timesteps, combine_embeddings).sample
loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean()
accelerator.backward(loss)
if accelerator.num_processes > 1:
grads = text_encoder.module.get_input_embeddings().weight.grad
else:
grads = text_encoder.get_input_embeddings().weight.grad
grads.data[index_grads_to_zero, :] = grads.data[index_grads_to_zero, :].fill_(0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(refresh=False, **logs)
accelerator.log(logs, step=global_step)
if global_step >= max_train_steps:
break
if global_step >= max_train_steps:
break
# save concept token embeddings per epoch
accelerator.wait_for_everyone()
if accelerator.is_main_process:
out_dir = os.path.join(save_path, "tokens")
if epoch != num_train_epochs - 1:
out_dir = os.path.join(save_path, f"tokens_e{epoch}")
os.makedirs(out_dir, exist_ok=True)
unwrap_text_encoder = accelerator.unwrap_model(text_encoder)
concept_token = dataset.tokenizer.decode(token_id)
concept_token_embeddings = unwrap_text_encoder.get_input_embeddings().weight[token_id]
dct = {concept_token: concept_token_embeddings.detach().cpu()}
torch.save(dct, os.path.join(out_dir, f"{token_id}.bin"))
accelerator.end_training()
if keep_class is None:
keep_class = list(range(dataset.num_classes))
for class_id in keep_class:
train_loop(config, class_id, text_encoder, unet, vae, dataset)
def train_unet(config):
split = "train"
device = 'cuda'
torch_dtype = torch.float32
load_pretrain_path = config["train"]["load_pretrain_path"]
text_encoder = CLIPTextModel.from_pretrained(load_pretrain_path, subfolder="text_encoder", torch_dtype=torch_dtype)
vae = AutoencoderKL.from_pretrained(load_pretrain_path, subfolder="vae", torch_dtype=torch_dtype)
unet = UNet2DConditionModel.from_pretrained(load_pretrain_path, subfolder="unet", torch_dtype=torch_dtype)
noise_scheduler = DDPMScheduler.from_pretrained(load_pretrain_path, subfolder="scheduler")
def freeze_params(params):
for param in params:
param.requires_grad = False
freeze_params(itertools.chain(
vae.parameters(),
text_encoder.parameters(),
))
data_configs = config["data"][split].copy()
dataset_config = data_configs.pop("dataset", None)
dataset_type = dataset_config.pop("type", "imagenet")
dataset_config.update(dict(
test_mode=(split == "val" or split == "test"),
text_encoder=text_encoder))
dataset = DATASETS[dataset_type](**dataset_config)
dataloader = torch.utils.data.DataLoader(dataset, **data_configs)
def train_loop(config, text_encoder=None, unet=None, vae=None, dataloader=None):
config = copy.deepcopy(config)
accelerator_config = config.get("accelerator", None)
accelerator = Accelerator(**accelerator_config)
if accelerator.is_main_process:
accelerator.init_trackers("wsol", config=config)
save_path = config['train']['save_path']
save_step = config['train']['save_step']
batch_size = config['data']['train']['batch_size']
gradient_accumulation_steps = config['accelerator']['gradient_accumulation_steps']
num_train_epochs = config['train']['epochs']
max_train_steps = config['lr_scheduler']['num_training_steps'] // gradient_accumulation_steps
total_batch_size = batch_size * accelerator.num_processes * gradient_accumulation_steps
if config['train']['scale_lr']:
config['optimizer']['lr'] = config['optimizer']['lr'] * total_batch_size
if (max_train_steps is None) or (max_train_steps == 0):
num_update_steps_per_epoch = math.ceil(len(dataloader) / gradient_accumulation_steps)
max_train_steps = num_train_epochs * num_update_steps_per_epoch // accelerator.num_processes
config['lr_scheduler']['num_training_steps'] = max_train_steps * gradient_accumulation_steps
optimizer_config = config.get("optimizer", None)
optimizer_type = optimizer_config.pop("type", "AdamW")
lr_scheduler_config = config.get("lr_scheduler", None)
lr_scheduler_type = lr_scheduler_config.pop("type", "constant")
optimizer = OPTIMIZER[optimizer_type](accelerator.unwrap_model(unet).parameters(), **optimizer_config)
lr_scheduler = get_scheduler(name=lr_scheduler_type, optimizer=optimizer, **lr_scheduler_config)
if accelerator.is_main_process:
print(f"INFO: Train Save:\t [ckpt: {save_path}]", flush=True)
print(f"INFO: Train UNet:\t [num samples: {len(dataloader)}] "
f"[num epochs: {num_train_epochs}] [batch size: {total_batch_size}] "
f"[total steps: {max_train_steps}] [save step: {save_step}]", flush=True)
vae, unet, text_encoder, optimizer, lr_scheduler, dataloader = accelerator.prepare(vae, unet, text_encoder,
optimizer, lr_scheduler,
dataloader)
vae.eval()
text_encoder.eval()
global_step = 0
progress_bar = tqdm.tqdm(range(max_train_steps), disable=(not accelerator.is_local_main_process))
for epoch in range(num_train_epochs):
unet.train()
progress_bar.set_description(f"Epoch[{epoch + 1}/{num_train_epochs}] ")
for step, data in enumerate(dataloader):
with accelerator.accumulate(unet):
representative_embeddings = text_encoder(data["caption_ids_concept_token"])[0]
discriminative_embeddings = text_encoder(data["caption_ids_meta_token"])[0]
combine_embeddings = 0.5 * representative_embeddings + 0.5 * discriminative_embeddings
image = data["img"].to(torch_dtype)
latents = vae.encode(image).latent_dist.sample().detach() * 0.18215
noise = torch.randn(latents.shape, device=latents.device, dtype=torch_dtype)
timesteps = torch.randint(low=0, high=noise_scheduler.config.num_train_timesteps,
size=(latents.shape[0],), device=latents.device).long()
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
noise_pred = unet(noisy_latents, timesteps, combine_embeddings).sample
loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean()
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(refresh=False, **logs)
accelerator.log(logs, step=global_step)
if global_step >= max_train_steps:
break
elif (global_step + 1) % save_step == 0:
if accelerator.sync_gradients:
accelerator.wait_for_everyone()
if accelerator.is_main_process:
out_dir = os.path.join(save_path, f"unet_s{global_step}")
os.makedirs(out_dir, exist_ok=True)
try:
unet.module.save_pretrained(save_directory=out_dir)
except:
unet.save_pretrained(save_directory=out_dir)
if global_step >= max_train_steps:
break
accelerator.end_training()
train_loop(config, text_encoder, unet, vae, dataloader)
if __name__ == "__main__":
args, config = set_env(benchmark=True)
print(args)
eval(args.function)(config)