-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural_network.py
62 lines (43 loc) · 2.52 KB
/
neural_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import numpy as np
class NN:
def __init__(self, topology):
self.logsig = (lambda x: 1 / (1 + np.e** (-x)),lambda x: x * (1 - x))
self.relu = lambda x: np.maximum(0, x)
self.functionCost = (lambda Yp, Yr: np.mean((Yp - Yr)** 2), lambda Yp, Yr: (Yp - Yr))
self.buildNeuralNetwork(topology, self.logsig)
def buildNeuralNetwork(self, topology, activation_function):
self.neural_network = []
for index, layer in enumerate(topology[:-1]):
self.neural_network.append(Neural_Layer(topology[index], topology[index+1], activation_function))
def trainingNeuralNetwork(self, X, Y, learning_factor = 0.1, training = True):
self.out = [(None, X)]
self.forwarPass(Y)
if training:
self.backwarPass(Y, learning_factor)
return self.out[-1][1]
def forwarPass(self, Y):
for l, layer in enumerate(self.neural_network):
weighted_sum = self.out[-1][1] @ self.neural_network[l].weight + self.neural_network[l].bias
activation_function = self.neural_network[l].activation_function[0](weighted_sum)
self.out.append((weighted_sum, activation_function))
# print(funcionCoste[0](out[-1][1], Y))
def backwarPass(self, Y, learning_factor):
deltas = []
for layer in reversed(range(0, len(self.neural_network))):
weighted_sum = self.out[layer+1][0]
activation_function = self.out[layer+1][1]
if layer == len(self.neural_network)-1:
deltas.insert(0, self.functionCost[1](activation_function, Y) * self.neural_network[layer].activation_function[1](activation_function))
else:
deltas.insert(0, deltas[0] @ _weight.T * self.neural_network[layer].activation_function[1](activation_function))
_weight = self.neural_network[layer].weight
self.neural_network[layer].bias = self.neural_network[layer].bias - np.mean(deltas[0], axis=0, keepdims=True) * learning_factor
self.neural_network[layer].weight = self.neural_network[layer].weight - self.out[layer][1].T @ deltas[0] * learning_factor
pass
def testingNeuralNetwork(self):
pass
class Neural_Layer():
def __init__(self, nConnections, nNeurons, activation_function):
self.activation_function = activation_function
self.bias = np.random.rand(1, nNeurons) * 2 - 1
self.weight = np.random.rand(nConnections, nNeurons) * 2 - 1