-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDE_DQE0.ijm
149 lines (131 loc) · 5.04 KB
/
DE_DQE0.ijm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
print("\\Clear");
print("DE_DQE0");
print("Version : 1.02");
print("Date : 2021.12.21");
print("Author : Benjamin Bammes, Direct Electron LP (bbammes@directelectron.com)");
print("License : GNU General Public License v2.0");
print("");
print("Uses the noise binning method as described in McMullan, et al. 2009. Ultramicroscopy 109:1126-43.");
print("");
openImages = getList("image.titles");
if (openImages.length < 1) {
print("Error");
exit("No image stack found.");
}
Stack.getDimensions(width, height, channels, slices, frames);
if (slices < 2) {
print("Error");
exit("This macro requires an image stack with at least two slices.");
}
if (getValue("selection.size") != 4) {
print("Error");
exit("You must select a single square ROI before running this macro.");
}
run("Duplicate...", "title=DQE0_CroppedStack duplicate");
Stack.getDimensions(width, height, channels, slices, frames);
if (width != height) {
close("DQE0_CroppedStack");
print("Error");
exit("You must select a square ROI before running this macro.");
}
aduPerElectron = getNumber("ADU per Primary Electron", 0);
if (aduPerElectron < 1.0) {
close("DQE0_CroppedStack");
print("Error");
exit("You must enter a valid value (>=1) for ADU per Primary Electron.");
}
maxBinning = Math.floor(width / 14);
resultArrayX = newArray(0);
resultArrayY = newArray(0);
maxResultValue = 0.0;
Stack.getStatistics(voxelCount, mean, min, max, std);
minValue = mean - std * 4.0;
maxValue = mean + std * 4.0;
run("Min...", "value=" + minValue + " stack");
run("Max...", "value=" + maxValue + " stack");
Stack.getStatistics(voxelCount, meanADU, min, max, std);
electronsPerPixel = meanADU / aduPerElectron;
for (i = 1; i <= slices; i++) {
Stack.setSlice(i);
run("Set Label...", "label=DQE0_Image_" + i);
}
run("Stack to Images");
Plot.create("DQE0 Noise Binning Results", "Binning", "Variance / Binning^2");
Plot.setFrameSize(800, 600);
Plot.setLimits(0, maxBinning, 0, 100 );
Plot.setColor("#1965B0");
Plot.add("circles", resultArrayX, resultArrayY);
Plot.show;
comparisons = 0;
for (i = 1; i <= slices; i++) {
for (j = i + 1; j <= slices; j++) {
print("Processing frame " + i + " and " + j + "...");
imageCalculator("Subtract create 32-bit", "DQE0_Image_" + i, "DQE0_Image_" + j);
selectWindow("Result of DQE0_Image_" + i);
rename("DQE0_ActiveImage");
for (b = 1; b < maxBinning; b++) {
selectWindow("DQE0_ActiveImage");
run("Duplicate...", "title=DQE0_ActiveImage_Binned");
run("Bin...", "x=" + b + " y=" + b + " bin=Sum");
getDimensions(binnedWidth, binnedHeight, binnedChannels, binnedSlices, binnedFrames);
makeRectangle(1, 1, binnedWidth - 2, binnedHeight - 2);
getStatistics(area, mean, min, max, std);
varianceOverBinningSq = (std * std) / (b * b);
resultArrayX = Array.concat(resultArrayX, b);
resultArrayY = Array.concat(resultArrayY, varianceOverBinningSq);
if (varianceOverBinningSq > maxResultValue) {
maxResultValue = varianceOverBinningSq;
}
close("DQE0_ActiveImage_Binned");
Plot.create("DQE0 Noise Binning Results", "Binning", "Variance / Binning^2");
Plot.setFrameSize(800, 600);
Plot.setLimits(0, maxBinning, 0, maxResultValue * 1.05 );
Plot.setColor("#1965B0");
Plot.add("circles", resultArrayX, resultArrayY, "Data");
Plot.update();
}
close("DQE0_ActiveImage");
comparisons++;
}
}
for (i = 1; i <= slices; i++) {
close("DQE0_Image_" + i);
}
resultArray = newArray(0);
minBinning = Math.floor(maxBinning * 0.667);
for (i = 0; i < resultArrayX.length; i++) {
if (resultArrayX[i] > minBinning) {
resultArray = Array.concat(resultArray, resultArrayY[i]);
}
}
Array.getStatistics(resultArray, min, max, mean, std);
meanX = newArray(-1, maxBinning + 1);
meanY = newArray(mean, mean);
stdError = std / Math.sqrt(comparisons);
dqe0 = (meanADU * meanADU) / (0.5 * mean * electronsPerPixel);
dqe0SigmaExposure = Math.sqrt(electronsPerPixel) * (meanADU * meanADU) / (0.5 * mean * electronsPerPixel * electronsPerPixel);
dqe0SigmaVariance = stdError * (meanADU * meanADU) / (0.5 * mean * mean * electronsPerPixel);
dqe0Error = Math.sqrt(dqe0SigmaExposure * dqe0SigmaExposure + dqe0SigmaVariance * dqe0SigmaVariance);
dqe0 = Math.round(dqe0 * 1000) / 1000.0;
dqe0Error = Math.round(dqe0Error * 1000) / 1000.0;
Plot.create("DQE0 Noise Binning Results", "Binning", "Variance / Binning^2");
Plot.setFrameSize(800, 600);
Plot.setLimits(0, maxBinning, 0, maxResultValue * 1.05 );
Plot.setColor("#CDD5EB", "#CDD5EB");
Plot.drawShapes("rectangles", -1, mean + stdError, maxBinning + 1, mean - stdError);
Plot.setColor("#1965B0");
Plot.add("circles", resultArrayX, resultArrayY, "Data");
Plot.add("line", meanX, meanY, "Mean");
Plot.addText("DQE(0) = " + dqe0 + " +/- " + dqe0Error, 0.02, 0.05);
Plot.update();
print("");
print("RESULTS");
print("Number of images : " + slices);
print("Mean intensity : " + meanADU);
print("ADU per electron : " + aduPerElectron);
print("Electrons per pixel : " + electronsPerPixel);
print("DQE(0) exposure sigma : " + dqe0SigmaExposure);
print("DQE(0) variance sigma : " + dqe0SigmaVariance);
print("DQE(0) : " + dqe0 + " +/- " + dqe0Error);
print("");
print("Done");