-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDE_NNPS.ijm
224 lines (202 loc) · 7.98 KB
/
DE_NNPS.ijm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
print("\\Clear");
print("DE_NNPS");
print("Version : 1.02");
print("Date : 2021.12.21");
print("Author : Benjamin Bammes, Direct Electron LP (bbammes@directelectron.com)");
print("License : GNU General Public License v2.0");
print("Requires : https://imagej.nih.gov/ij/plugins/radial-profile.html");
print("");
openImages = getList("image.titles");
if (openImages.length < 1) {
print("Error");
exit("No image stack found.");
}
Stack.getDimensions(width, height, channels, slices, frames);
if (slices < 2) {
print("Error");
exit("This macro requires an image stack with at least two slices.");
}
if (getValue("selection.size") != 4) {
print("Error");
exit("You must select a single square ROI before running this macro.");
}
run("Duplicate...", "title=NNPS_CroppedStack duplicate");
Stack.getDimensions(width, height, channels, slices, frames);
if (width != height) {
close("NNPS_CroppedStack");
print("Error");
exit("You must select a square ROI before running this macro.");
}
Stack.getStatistics(voxelCount, mean, min, max, std);
minValue = mean - std * 4.0;
maxValue = mean + std * 4.0;
run("Min...", "value=" + minValue + " stack");
run("Max...", "value=" + maxValue + " stack");
resultArrayX = newArray(0);
resultArrayY = newArray(0);
for (i = 1; i <= slices; i++) {
Stack.setSlice(i);
run("Set Label...", "label=NNPS_Image_" + i);
}
run("Stack to Images");
psWidth = 0;
comparisons = 0;
for (i = 1; i <= slices; i++) {
for (j = i + 1; j <= slices; j++) {
print("Processing frame " + i + " and " + j + "...");
imageCalculator("Subtract create 32-bit", "NNPS_Image_" + i, "NNPS_Image_" + j);
selectWindow("Result of NNPS_Image_" + i);
rename("NNPS_ActiveImage");
selectWindow("NNPS_ActiveImage");
run("FFT Options...", "fft raw do");
close("NNPS_ActiveImage");
close("FFT of NNPS_ActiveImage");
selectWindow("PS of NNPS_ActiveImage");
getDimensions(psWidth, psHeight, psChannels, psSlices, psFrames);
makeRectangle(0, 0, psWidth, psHeight);
run("Radial Profile", "x=" + Math.floor(psWidth / 2) + " y=" + Math.floor(psHeight / 2) + " radius=" + Math.floor(psWidth / 2));
Plot.getValues(plotX, plotY);
for (n = 0; n < plotX.length; n++) {
resultArrayX = Array.concat(resultArrayX, plotX[n] / (psWidth / 2.0));
resultArrayY = Array.concat(resultArrayY, plotY[n]);
}
close("PS of NNPS_ActiveImage");
close("Radial Profile Plot");
comparisons++;
}
}
for (i = 1; i <= slices; i++) {
close("NNPS_Image_" + i);
}
print("Normalizing and averaging results...");
lowFreqArray = newArray(0);
for (i = 0; i < resultArrayX.length; i++) {
if ((resultArrayX[i] >= 0.04) && (resultArrayX[i] <= 0.08)) {
lowFreqArray = Array.concat(lowFreqArray, resultArrayY[i]);
}
}
Array.getStatistics(lowFreqArray, lowFreqMin, lowFreqMax, lowFreqMean, lowFreqStd);
highFreqArray = newArray(0);
for (i = 0; i < resultArrayX.length; i++) {
if ((resultArrayX[i] >= 0.80) && (resultArrayX[i] <= 0.96)) {
highFreqArray = Array.concat(highFreqArray, resultArrayY[i]);
}
}
Array.getStatistics(highFreqArray, highFreqMin, highFreqMax, highFreqMean, highFreqStd);
mean = lowFreqMean;
if (((lowFreqMean / highFreqMean) >= 0.666667) && ((lowFreqMean / highFreqMean) <= 1.5)) {
print(" Counting mode detected");
mean = highFreqMean;
}
for (i = 0; i < resultArrayX.length; i++) {
resultArrayY[i] = resultArrayY[i] / mean;
}
print("NPS(0) : " + mean);
nnpsLength = Math.floor(psWidth / 2);
xArray = newArray(0);
meanArray = newArray(0);
minArray = newArray(0);
maxArray = newArray(0);
for (n = 0; n < nnpsLength; n++) {
valuesArray = newArray(0);
for (i = 0; i < resultArrayX.length; i++) {
if ((resultArrayX[i] >= ((n - 0.5) / nnpsLength)) && (resultArrayX[i] < ((n + 0.5) / nnpsLength))) {
valuesArray = Array.concat(valuesArray, resultArrayY[i]);
}
}
if (valuesArray.length > 0) {
Array.getStatistics(valuesArray, valuesMin, valuesMax, valuesMean, valuesStd);
valuesStd = valuesStd / comparisons;
xArray = Array.concat(xArray, (n + 0.0) / nnpsLength);
meanArray = Array.concat(meanArray, valuesMean);
minArray = Array.concat(minArray, valuesMean - valuesStd / Math.sqrt(comparisons));
maxArray = Array.concat(maxArray, valuesMean + valuesStd / Math.sqrt(comparisons));
}
}
smoothingWidth = Math.floor(nnpsLength / 16);
smoothingHalfWidth = Math.floor(smoothingWidth / 2);
equationToFit = "y = a*exp(b*x)";
meanArray[0] = 1.0;
minArray[0] = 1.0;
maxArray[0] = 1.0;
fitArrayX = newArray(0);
fitArrayMeanY = newArray(0);
fitArrayMinY = newArray(0);
fitArrayMaxY = newArray(0);
for (n = 0; n < smoothingHalfWidth; n++) {
if ((meanArray[n] > 0.8) && (meanArray[n] < 1.2)) {
fitArrayX = Array.concat(fitArrayX, n);
fitArrayMeanY = Array.concat(fitArrayMeanY, meanArray[n]);
fitArrayMinY = Array.concat(fitArrayMinY, minArray[n]);
fitArrayMaxY = Array.concat(fitArrayMaxY, maxArray[n]);
}
}
Fit.doFit(equationToFit, fitArrayX, fitArrayMeanY, newArray(meanArray[0], -0.01));
for (n = 0; n < smoothingHalfWidth; n++) {
meanArray[n] = Fit.f(n + 0.0);
}
Fit.doFit(equationToFit, fitArrayX, fitArrayMinY, newArray(minArray[0], -0.01));
for (n = 0; n < smoothingHalfWidth; n++) {
minArray[n] = Fit.f(n + 0.0);
}
Fit.doFit(equationToFit, fitArrayX, fitArrayMaxY, newArray(maxArray[0], -0.01));
for (n = 0; n < smoothingHalfWidth; n++) {
maxArray[n] = Fit.f(n + 0.0);
}
for (n = smoothingHalfWidth; n < meanArray.length - smoothingHalfWidth; n++) {
fitArrayX = newArray(0);
fitArrayMeanY = newArray(0);
fitArrayMinY = newArray(0);
fitArrayMaxY = newArray(0);
for (k = (-1 * smoothingHalfWidth); k <= smoothingHalfWidth; k++) {
fitArrayX = Array.concat(fitArrayX, k);
fitArrayMeanY = Array.concat(fitArrayMeanY, meanArray[n + k]);
fitArrayMinY = Array.concat(fitArrayMinY, minArray[n + k]);
fitArrayMaxY = Array.concat(fitArrayMaxY, maxArray[n + k]);
}
Fit.doFit(equationToFit, fitArrayX, fitArrayMeanY, newArray(meanArray[n], -0.5));
meanArray[n] = Fit.f(0.0);
Fit.doFit(equationToFit, fitArrayX, fitArrayMinY, newArray(minArray[n], -0.5));
minArray[n] = Fit.f(0.0);
Fit.doFit(equationToFit, fitArrayX, fitArrayMaxY, newArray(maxArray[n], -0.5));
maxArray[n] = Fit.f(0.0);
}
fitArrayX = newArray(0);
fitArrayMeanY = newArray(0);
fitArrayMinY = newArray(0);
fitArrayMaxY = newArray(0);
for (n = meanArray.length - smoothingHalfWidth; n < meanArray.length; n++) {
fitArrayX = Array.concat(fitArrayX, n - (meanArray.length - smoothingHalfWidth));
fitArrayMeanY = Array.concat(fitArrayMeanY, meanArray[n]);
fitArrayMinY = Array.concat(fitArrayMinY, minArray[n]);
fitArrayMaxY = Array.concat(fitArrayMaxY, maxArray[n]);
}
Fit.doFit(equationToFit, fitArrayX, fitArrayMeanY, newArray(meanArray[meanArray.length - smoothingHalfWidth], -0.01));
for (n = meanArray.length - smoothingHalfWidth; n < meanArray.length; n++) {
meanArray[n] = Fit.f(n - (meanArray.length - smoothingHalfWidth));
}
Fit.doFit(equationToFit, fitArrayX, fitArrayMinY, newArray(minArray[meanArray.length - smoothingHalfWidth], -0.01));
for (n = meanArray.length - smoothingHalfWidth; n < meanArray.length; n++) {
minArray[n] = Fit.f(n - (meanArray.length - smoothingHalfWidth));
}
Fit.doFit(equationToFit, fitArrayX, fitArrayMaxY, newArray(maxArray[meanArray.length - smoothingHalfWidth], -0.01));
for (n = meanArray.length - smoothingHalfWidth; n < meanArray.length; n++) {
maxArray[n] = Fit.f(n - (meanArray.length - smoothingHalfWidth));
}
for (n = smoothingHalfWidth - 2; n < smoothingHalfWidth + 1; n++) {
meanArray[n] = (meanArray[n - 2] + meanArray[n - 1] + meanArray[n + 1] + meanArray[n + 2]) / 4.0;
minArray[n] = (minArray[n - 2] + minArray[n - 1] + minArray[n + 1] + minArray[n + 2]) / 4.0;
maxArray[n] = (maxArray[n - 2] + maxArray[n - 1] + maxArray[n + 1] + maxArray[n + 2]) / 4.0;
}
Plot.create("NNPS Results", "1 / Nyquist", "NNPS");
Plot.setFrameSize(800, 600);
Plot.setLimits(0, 1, 0, 1.1 );
Plot.setColor("#CDD5EB");
Plot.add("line", xArray, minArray, "Mean - StdErr");
Plot.add("line", xArray, maxArray, "Mean + StdErr");
Plot.setColor("#1965B0");
Plot.add("circles", resultArrayX, resultArrayY, "Data");
Plot.add("line", xArray, meanArray, "Mean");
Plot.show();
print("");
print("Done");