-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathwarped_rays_vis.py
377 lines (322 loc) · 17.7 KB
/
warped_rays_vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import os
import time
import numpy as np
import cv2
import imageio
from tensorboardX import SummaryWriter
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
# from NeRF import *
# from NeRF_cbnet import *
# import pdb;pdb.set_trace()
from data_utils.load_llff import load_llff_data
from utils.run_dpnerf_helpers import *
from utils.metrics import compute_img_metric
def config_parser():
import configargparse
parser = configargparse.ArgumentParser()
parser.add_argument('--config', is_config_file=True,
help='config file path')
parser.add_argument("--expname", type=str,
help='experiment name')
parser.add_argument("--basedir", type=str, default='./logs/', required=True,
help='where to store ckpts and logs')
parser.add_argument("--datadir", type=str, required=True,
help='input data directory')
parser.add_argument("--datadownsample", type=float, default=-1,
help='if downsample > 0, means downsample the image to scale=datadownsample')
parser.add_argument("--tbdir", type=str, required=True,
help="tensorboard log directory")
parser.add_argument("--num_gpu", type=int, default=1,
help=">1 will use DataParallel")
parser.add_argument("--torch_hub_dir", type=str, default='',
help=">1 will use DataParallel")
# training options
parser.add_argument("--netdepth", type=int, default=8,
help='layers in network')
parser.add_argument("--netwidth", type=int, default=256,
help='channels per layer')
parser.add_argument("--netdepth_fine", type=int, default=8,
help='layers in fine network')
parser.add_argument("--netwidth_fine", type=int, default=256,
help='channels per layer in fine network')
parser.add_argument("--N_rand", type=int, default=32 * 32 * 4,
help='batch size (number of random rays per gradient step)')
parser.add_argument("--lrate", type=float, default=5e-4,
help='learning rate')
parser.add_argument("--lrate_decay", type=int, default=250,
help='exponential learning rate decay (in 1000 steps)')
# generate N_rand # of rays, divide into chunk # of batch
# then generate chunk * N_samples # of points, divide into netchunk # of batch
parser.add_argument("--chunk", type=int, default=1024 * 32,
help='number of rays processed in parallel, decrease if running out of memory')
parser.add_argument("--netchunk", type=int, default=1024 * 64,
help='number of pts sent through network in parallel, decrease if running out of memory')
parser.add_argument("--no_reload", action='store_true',
help='do not reload weights from saved ckpt')
parser.add_argument("--ft_path", type=str, default=None,
help='specific weights npy file to reload for coarse network')
# rendering options
parser.add_argument("--N_iters", type=int, default=50000,
help='number of iteration')
parser.add_argument("--N_samples", type=int, default=64,
help='number of coarse samples per ray')
parser.add_argument("--N_importance", type=int, default=0,
help='number of additional fine samples per ray')
parser.add_argument("--perturb", type=float, default=1.,
help='set to 0. for no jitter, 1. for jitter')
parser.add_argument("--use_viewdirs", action='store_true',
help='use full 5D input instead of 3D')
parser.add_argument("--i_embed", type=int, default=0,
help='set 0 for default positional encoding, -1 for none')
parser.add_argument("--multires", type=int, default=10,
help='log2 of max freq for positional encoding (3D location)')
parser.add_argument("--multires_views", type=int, default=4,
help='log2 of max freq for positional encoding (2D direction)')
parser.add_argument("--raw_noise_std", type=float, default=0.,
help='std dev of noise added to regularize sigma_a output, 1e0 recommended')
parser.add_argument("--rgb_activate", type=str, default='sigmoid',
help='activate function for rgb output, choose among "none", "sigmoid"')
parser.add_argument("--sigma_activate", type=str, default='relu',
help='activate function for sigma output, choose among "relu", "softplue"')
####### render option, will not effect training ########
parser.add_argument("--render_only", action='store_true',
help='do not optimize, reload weights and render out render_poses path')
parser.add_argument("--render_test", action='store_true',
help='render the test set instead of render_poses path')
parser.add_argument("--render_multipoints", action='store_true',
help='render sub image that reconstruct the blur image')
parser.add_argument("--render_rmnearplane", type=int, default=0,
help='when render, set the density of nearest plane to 0')
parser.add_argument("--render_focuspoint_scale", type=float, default=1.,
help='scale the focal point when render')
parser.add_argument("--render_radius_scale", type=float, default=1.,
help='scale the radius of the camera path')
parser.add_argument("--render_factor", type=int, default=0,
help='downsampling factor to speed up rendering, set 4 or 8 for fast preview')
parser.add_argument("--render_epi", action='store_true',
help='render the video with epi path')
## llff flags
parser.add_argument("--factor", type=int, default=None,
help='downsample factor for LLFF images')
parser.add_argument("--no_ndc", action='store_true',
help='do not use normalized device coordinates (set for non-forward facing scenes)')
parser.add_argument("--lindisp", action='store_true',
help='sampling linearly in disparity rather than depth')
parser.add_argument("--spherify", action='store_true',
help='set for spherical 360 scenes')
parser.add_argument("--llffhold", type=int, default=8,
help='will take every 1/N images as LLFF test set, paper uses 8')
# ######### Unused params from the original ###########
parser.add_argument("--precrop_iters", type=int, default=0,
help='number of steps to train on central crops')
parser.add_argument("--precrop_frac", type=float,
default=.5, help='fraction of img taken for central crops')
# dataset options
parser.add_argument("--dataset_type", type=str, default='llff',
help='options: llff / blender / deepvoxels')
parser.add_argument("--testskip", type=int, default=8,
help='will load 1/N images from test/val sets, useful for large datasets like deepvoxels')
## deepvoxels flags
parser.add_argument("--shape", type=str, default='greek',
help='options : armchair / cube / greek / vase')
## blender flags
parser.add_argument("--white_bkgd", action='store_true',
help='set to render synthetic data on a white bkgd (always use for dvoxels)')
parser.add_argument("--half_res", action='store_true',
help='load blender synthetic data at 400x400 instead of 800x800')
################# logging/saving options ##################
parser.add_argument("--i_print", type=int, default=200,
help='frequency of console printout and metric loggin')
parser.add_argument("--i_tensorboard", type=int, default=200,
help='frequency of tensorboard image logging')
parser.add_argument("--i_weights", type=int, default=20000,
help='frequency of weight ckpt saving')
parser.add_argument("--i_testset", type=int, default=20000,
help='frequency of testset saving')
parser.add_argument("--i_video", type=int, default=20000,
help='frequency of render_poses video saving')
# =================== DP-NeRF Options =============================
parser.add_argument("--blur_model_type", type=str, default='dpnerf',
help='choose among <none>, <dpnerf>')
parser.add_argument("--kernel_start_iter", type=int, default=0,
help='start training kernel after # iteration')
parser.add_argument("--tone_mapping_type", type=str, default='none',
help='the tone mapping of linear to LDR color space, <none>, <gamma>, <learn>')
parser.add_argument("--use_dpnerf", action='store_true',
help='use_dpnerf')
parser.add_argument("--rbk_use_view_embed", action='store_true',
help='use_view_embedding in rbk')
parser.add_argument("--rbk_view_embed_ch", type=int, default=32,
help='view embedding ch')
parser.add_argument("--rbk_use_viewdirs", action='store_true',
help='use viewdirs in rbk')
parser.add_argument("--rbk_enc_brc_depth", type=int, default=4,
help='rbk encoding network depth')
parser.add_argument("--rbk_enc_brc_width", type=int, default=64,
help='rbk encoding network width')
parser.add_argument("--rbk_enc_brc_skips", type=int, default=4,
help='rbk encoding network skip connection')
parser.add_argument("--rbk_num_motion", type=int, default=4,
help='rbk network - number of motion')
parser.add_argument("--rbk_se_r_depth", type=int, default=1,
help='rbk se3 r network depth')
parser.add_argument("--rbk_se_r_width", type=int, default=32,
help='rbk se3 r network width')
parser.add_argument("--rbk_se_r_output_ch", type=int, default=3,
help='rbk se3 r network output channel')
parser.add_argument("--rbk_se_v_depth", type=int, default=1,
help='rbk se3 v network depth')
parser.add_argument("--rbk_se_v_width", type=int, default=32,
help='rbk se3 v network width')
parser.add_argument("--rbk_se_v_output_ch", type=int, default=3,
help='rbk se3 v network output channel')
parser.add_argument("--rbk_ccw_depth", type=int, default=1,
help='rbk ccw network depth')
parser.add_argument("--rbk_ccw_width", type=int, default=32,
help='rbk ccw network width')
parser.add_argument("--rbk_se_rv_window", type=float, default=0.2,
help='rbk se3 rv network output scale window')
parser.add_argument("--rbk_use_origin", action='store_true',
help='use original ray in rbk module')
parser.add_argument("--use_awp", action='store_true',
help='use awp module')
parser.add_argument("--awp_sam_emb_depth", type=int, default=4,
help='awp sample feature embedding layer depth')
parser.add_argument("--awp_sam_emb_width", type=int, default=32,
help='awp sample feature embedding layer width')
parser.add_argument("--awp_dir_freq", type=int, default=2,
help='awp dir fourier embedding freq')
parser.add_argument("--awp_mot_emb_depth", type=int, default=1,
help='awp motion feature embedding layer depth')
parser.add_argument("--awp_mot_emb_width", type=int, default=32,
help='awp motion feature embedding layer depth')
parser.add_argument("--awp_rgb_freq", type=int, default=2,
help='awp rgb freq')
parser.add_argument("--awp_depth_freq", type=int, default=2,
help='awp depth freq')
parser.add_argument("--awp_ray_dir_freq", type=int, default=2,
help='awp network ray dir freq')
parser.add_argument("--use_coarse_to_fine_opt", action='store_true',
help='use_coarse_to_fine_optimization')
parser.add_argument("--warped_rays_path", type=str, required=True,
help='input pose ray directory')
parser.add_argument("--vis_img_idx", type=int, default=1,
help='dbk cb feature embedding layer width')
return parser
parser = config_parser()
args = parser.parse_args()
# Load data
K = None
if args.dataset_type == 'llff':
images, poses, bds, render_poses, i_test = load_llff_data(args, args.datadir, args.factor,
recenter=True, bd_factor=.75,
spherify=args.spherify,
path_epi=args.render_epi)
hwf = poses[0, :3, -1]
poses = poses[:, :3, :4]
print('Loaded llff', images.shape, render_poses.shape, hwf, args.datadir)
if not isinstance(i_test, list):
i_test = [i_test]
print('LLFF holdout,', args.llffhold)
i_test = np.arange(images.shape[0])[::args.llffhold]
i_val = i_test
i_train = np.array([i for i in np.arange(int(images.shape[0])) if
(i not in i_test and i not in i_val)])
print('DEFINING BOUNDS')
if args.no_ndc:
near = np.min(bds) * 0.9
far = np.max(bds) * 1.0
else:
near = 0.
far = 1.
print('NEAR FAR', near, far)
imagesf = images
images = (images * 255).astype(np.uint8)
images_idx = np.arange(0, len(images))
H, W, focal = hwf
H, W = int(H), int(W)
hwf = [H, W, focal]
if K is None:
K = np.array([
[focal, 0, 0.5 * W],
[0, focal, 0.5 * H],
[0, 0, 1]
])
# ============================================
# Prepare ray dataset if batching random rays
# ============================================
N_rand = args.N_rand
train_datas = {}
# if downsample, downsample the images
if args.datadownsample > 0:
images_train = np.stack([cv2.resize(img_, None, None,
1 / args.datadownsample, 1 / args.datadownsample,
cv2.INTER_AREA) for img_ in imagesf], axis=0)
else:
images_train = imagesf
num_img, hei, wid, _ = images_train.shape
print(f"train on image sequence of len = {num_img}, {wid}x{hei}")
k_train = np.array([K[0, 0] * wid / W, 0, K[0, 2] * wid / W,
0, K[1, 1] * hei / H, K[1, 2] * hei / H,
0, 0, 1]).reshape(3, 3).astype(K.dtype)
quota = args.vis_img_idx // args.llffhold
assert quota == 0, "Not blurred image index. Please specify blurred image index."
vis_idx = args.vis_img_idx - (quota + 1)
poses_rays= np.load(args.warped_rays_path)
# poses = poses[i_train]
print('get rays')
########################################
############## ndc poses ###############
########################################
# import pdb;pdb.set_trace()
for i, rbk_rays in enumerate(poses_rays):
if i == vis_idx:
fig_ndc = plt.figure(figsize = (15, 15))
ax = plt.axes(projection='3d')
# for j in range(rbk_rays.shape[0]):
rbk_rays_o = rbk_rays[:,:,0]
rbk_rays_d = rbk_rays[:,:,1]
rbk_rays_o, rbk_rays_d = ndc_rays(H, W, K[0][0], 1., torch.tensor(rbk_rays_o), torch.tensor(rbk_rays_d))
rbk_rays_o, rbk_rays_d = np.array(rbk_rays_o), np.array(rbk_rays_d)
print('rbk_rays_o : ',rbk_rays_o)
print('rbk_rays_d : ',rbk_rays_d)
rbk_x = rbk_rays_o[:,0]
rbk_y = rbk_rays_o[:,1]
rbk_z = rbk_rays_o[:,2]
rbk_x_d = rbk_x + rbk_rays_d[:,0]*1.1 # default: 0.8, defocuspool: 1.5, blurpool: 0.15
rbk_y_d = rbk_y + rbk_rays_d[:,1]*1.1
rbk_z_d = rbk_z + rbk_rays_d[:,2]*1.1
dir_x = np.concatenate([rbk_x[...,None], rbk_x_d[...,None]], axis=1)
dir_y = np.concatenate([rbk_y[...,None], rbk_y_d[...,None]], axis=1)
dir_z = np.concatenate([rbk_z[...,None], rbk_z_d[...,None]], axis=1)
# for j in range(rbk_x.shape[0]):
# if j == 0:
# ax.plot3D(dir_z[j], dir_y[j], dir_x[j], 'orange')
# else:
# ax.plot3D(dir_z[j], dir_y[j], dir_x[j], 'green')
ax.plot3D(dir_y[0], dir_x[0], dir_z[0], 'orange')
ax.plot3D(dir_y[1], dir_x[1], dir_z[1], 'green')
ax.plot3D(dir_y[2], dir_x[2], dir_z[2], 'blue')
ax.plot3D(dir_y[3], dir_x[3], dir_z[3], 'red')
ax.plot3D(dir_y[4], dir_x[4], dir_z[4], 'violet')
ax.plot3D(dir_y[5], dir_x[5], dir_z[5], 'skyblue')
ax.plot3D(dir_y[6], dir_x[6], dir_z[6], 'olive')
ax.plot3D(dir_y[7], dir_x[7], dir_z[7], 'brown')
ax.plot3D(dir_y[8], dir_x[8], dir_z[8], 'pink')
# rbk_labels = np.array(['origin', 'C_1', 'C_2', 'C_3', 'C_4'])
ax.scatter3D(rbk_y, rbk_x, rbk_z, color='black', s=50, marker='>')
# scene_name_ndc = 'Blurpool RBK Visualization - num_motion 8'
scene_name_ndc = 'Defocuspool RBK Visualization - num_motion 8'
# ax_w.title = scene_name
# ax.set_xlim3d(-1.3, -1.1)
# ax.set_zlim3d(-1.2, 1)
# ax.set_ylim3d(0.6, 0.9)
ax.set_xlabel('Y axis')
ax.set_ylabel('X axis')
ax.set_zlabel('Z axis')
ax.view_init(-20,110)
# plt.title('{} {} Scene'.format(scene_name_ndc, i))
plt.title('{}'.format(scene_name_ndc))
plt.show()
# exit()