-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2.py
224 lines (182 loc) · 6.45 KB
/
2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Q2
# imports
import json
import math
class Graph:
'''
Graphs Object Class
@param self.graph_dict: dict
@param self.directed: bool
'''
def __init__(self, graph_dict=None, directed=True):
self.graph_dict = graph_dict or {}
self.directed = directed
if not directed:
self.make_undirected()
def make_undirected(self):
'''
Create an undirected graph
@param self: Graph
'''
for a in list(self.graph_dict.keys()):
for (b, dist) in self.graph_dict[a].items():
self.graph_dict.setdefault(b, {})[a] = dist
def connect(self, A, B, distance=1):
'''
Given the distance, connect the nodes A and B
If undirected, add the inverse link between A and B
@param self: Graph
'''
self.graph_dict.setdefault(A, {})[B] = distance
if not self.directed:
self.graph_dict.setdefault(B, {})[A] = distance
def get(self, a, b=None):
'''
Gets neighbours of the node
@param self: Graph
'''
links = self.graph_dict.setdefault(a, {})
if b is None:
return links
else:
return links.get(b)
def nodes(self):
'''
Return a list of nodes in the graph
@param self: Graph
'''
s1 = set([k for k in self.graph_dict.keys()])
s2 = set([k2 for v in self.graph_dict.values() for k2, v2 in v.items()])
nodes = s1.union(s2)
return list(nodes)
class Node:
'''
A node class for the station
@param self.name: str
@param self.parent: str
'''
def __init__(self, name:str, parent:str):
self.name = name
self.parent = parent
self.g = 0 # Distance to the start node (point)
self.h = 0 # Distance to the end node (point)
self.f = 0 # Total cost
def __eq__(self, other):
'''
Compare nodes
@param self: Node
'''
return self.name == other.name
def __lt__(self, other):
'''
Sort nodes
@param self: Node
'''
return self.f < other.f
def __repr__(self):
'''
Print nodes
@param self: Node
'''
return ('({0},{1})'.format(self.name, self.f))
def read_file(filename):
'''
Reads .json file and returns contents
@param myParam1: str
@return: dict
'''
with open(filename, "r") as myfile:
content = json.load(myfile)
return content
def makegraph(filename):
'''
Creates graph structure and defines nodes from .json file
@param myParam1: str
@return: Graph
'''
content = read_file(filename)
graph = Graph()
node_dict = {}
[val_list] = content.values()
for i in range(0, len(val_list)):
node_dict[val_list[i]["Name"]] = val_list[i]["Neighbours"]
for each_node in node_dict:
for each_neighbour in node_dict[each_node]:
graph.connect(each_node, each_neighbour["Name"], each_neighbour["Distance"])
graph.make_undirected()
return graph
# A* search
def astar_search(graph, heuristics, start, end):
'''
Returns the shortest path and its distance from the startpoint to the endpoint
'''
open = [] # open nodes list
closed = [] # closed nodes list
start_node = Node(start, None) # start node (startpoint)
goal_node = Node(end, None) # end node (endpoint)
open.append(start_node) # append the start node
# Loop until there are no other nodes in the open list
while len(open) > 0:
open.sort() # sort to determine the closest node
current_node = open.pop(0) # node with the shortest distance
closed.append(current_node) # append to the closed list
# if reached the end node, return the path
if current_node == goal_node:
path = []
while current_node != start_node:
path.append(current_node.name + ': ' + str(current_node.g))
current_node = current_node.parent
path.append(start_node.name + ': ' + str(start_node.g))
return path[::-1] # reversed path
# Get neighbours
neighbors = graph.get(current_node.name)
# Looping neighbors
for key, value in neighbors.items():
neighbor = Node(key, current_node) # Create a neighbor node
# if the neighbor is in the closed list, just continue
if(neighbor in closed):
continue
# Calculate the full distance
neighbor.g = current_node.g + graph.get(current_node.name, neighbor.name)
neighbor.h = heuristics.get(neighbor.name)
neighbor.f = neighbor.g + neighbor.h
# Check if neighbor is in the open list and has a lower total cost
if(add_to_open(open, neighbor) == True):
open.append(neighbor)
return None # no path found
# Check if a neighbor should be added to the open list
def add_to_open(open, neighbor):
for node in open:
if (neighbor == node and neighbor.f > node.f):
return False
return True
def cartesian_distance(x_1,y_1,x_2,y_2):
return math.sqrt((x_2 - x_1)**2 + (y_2 - y_1)**2)
def calc_heuristic(filename, startpoint, endpoint):
coordinates = {}
data = read_file(filename)["Nodes"]
for i in data:
coordinates.update({i["Name"]:i["Coordinates"]})
heuristics = {}
for key, value in coordinates.items():
approx = cartesian_distance(value[0],value[1],coordinates[endpoint][0],coordinates[endpoint][1])
heuristics.update({key:approx})
return heuristics
def conditions(filename1, filename2):
graph = makegraph(filename2) #making the graph
ofile = open("2.out","w") #output file
myfile = open(filename1, "r")
lines = myfile.readlines()
lst = [line.rstrip("\n") for line in lines]
output = [element.split(',') for element in lst]
for i in output:
estimate = calc_heuristic(filename2, i[0], i[1])
path = astar_search(graph, estimate, i[0], i[1]) #gives in form ['location:distance', etc...]
stops = [location.split(': ') for location in path]
#splits into [['location','distance'],etc...]
for j in stops:
ofile.write(j[0]+", ") #writes all the locations
ofile.write(stops[-1][1]+"\n") #writes the total distance
# Driver Code
if __name__ == "__main__":
conditions("2.in", "2.json")