-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3.py
279 lines (222 loc) · 8.79 KB
/
3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import json
import math
class Graph:
'''
A graph class for the entire TTC map
'''
def __init__(self, graph_dict=None, directed=True):
self.graph_dict = graph_dict or {}
self.directed = directed
if not directed:
self.make_undirected()
def make_undirected(self):
'''
create an undirected graph
'''
for a in list(self.graph_dict.keys()):
for (b, dist) in self.graph_dict[a].items():
self.graph_dict.setdefault(b, {})[a] = dist
# Add a link from A and B of given distance, and also add the inverse link if the graph is undirected
def connect(self, A, B, distance=1):
'''
Given the distance, connect the node A and B
If undirected, add the inverse link between A and B
'''
self.graph_dict.setdefault(A, {})[B] = distance
if not self.directed:
self.graph_dict.setdefault(B, {})[A] = distance
def get(self, a, b=None):
'''
get neighbours of the node
'''
links = self.graph_dict.setdefault(a, {})
if b is None:
return links
else:
return links.get(b)
def nodes(self):
'''
return a list of nodes in the graph
'''
s1 = set([k for k in self.graph_dict.keys()])
s2 = set([k2 for v in self.graph_dict.values() for k2, v2 in v.items()])
nodes = s1.union(s2)
return list(nodes)
class Node:
'''
A node class for the station
'''
def __init__(self, name:str, parent:str):
self.name = name
self.parent = parent
self.g = 0 # Distance to the start node (point)
self.h = 0 # Distance to the end node (point)
self.f = 0 # Total cost
def __eq__(self, other):
'''
compare nodes
'''
return self.name == other.name
def __lt__(self, other):
'''
sort nodes
'''
return self.f < other.f
def __repr__(self):
'''
print nodes
'''
return ('({0},{1})'.format(self.name, self.f))
def read_file(filename):
'''
Reads .json file and returns contents
@param myParam1: str
@return: dict
'''
with open(filename, "r") as myfile:
content = json.load(myfile)
return content
def makegraph(filename):
'''
Creates graph structure and defines nodes from .json file
@param myParam1: str
@return: Graph
'''
content = read_file(filename)
graph = Graph()
node_dict = {}
[val_list] = content.values()
for i in range(0, len(val_list)):
node_dict[val_list[i]["Name"]] = val_list[i]["Neighbours"]
for each_node in node_dict:
for each_neighbour in node_dict[each_node]:
graph.connect(each_node, each_neighbour["Name"], each_neighbour["Distance"])
graph.make_undirected()
return graph
# A* search
def astar_search(graph, heuristics, start, end):
'''
returns the shortest path and its distance from the startpoint to the endpoint
'''
open = [] # open nodes list
closed = [] # closed nodes list
start_node = Node(start, None) # start node (startpoint)
goal_node = Node(end, None) # end node (endpoint)
open.append(start_node) # append the start node
# Loop until there are no other nodes in the open list
while len(open) > 0:
open.sort() # sort to determine the closest node
current_node = open.pop(0) # node with the shortest distance
closed.append(current_node) # append to the closed list
# if reached the end node, return the path
if current_node == goal_node:
path = []
while current_node != start_node:
path.append(current_node.name + ': ' + str(current_node.g))
current_node = current_node.parent
path.append(start_node.name + ': ' + str(start_node.g))
return path[::-1] # reversed path
# Get neighbours
neighbors = graph.get(current_node.name)
# Looping neighbors
for key, value in neighbors.items():
neighbor = Node(key, current_node) # Create a neighbor node
# if the neighbor is in the closed list, just continue
if(neighbor in closed):
continue
# Calculate the full distance
neighbor.g = current_node.g + graph.get(current_node.name, neighbor.name)
neighbor.h = heuristics.get(neighbor.name)
neighbor.f = neighbor.g + neighbor.h
# Check if neighbor is in the open list and has a lower total cost
if(add_to_open(open, neighbor) == True):
open.append(neighbor)
return None # no path found
# Check if a neighbor should be added to the open list
def add_to_open(open, neighbor):
for node in open:
if (neighbor == node and neighbor.f > node.f):
return False
return True
def cartesian_distance(x_1,y_1,x_2,y_2):
return math.sqrt((x_2 - x_1)**2 + (y_2 - y_1)**2)
def calc_heuristic(filename, startpoint, endpoint):
coordinates = {}
data = read_file(filename)["Nodes"]
for i in data:
coordinates.update({i["Name"]:i["Coordinates"]})
heuristics = {}
for key, value in coordinates.items():
approx = cartesian_distance(value[0],value[1],coordinates[endpoint][0],coordinates[endpoint][1])
heuristics.update({key:approx})
return heuristics
def accessibility_distances(filename, newfile):
open(newfile, "w").write(open(filename).read())
myfile = open(newfile, "r")
data = json.load(myfile)
myfile.close()
for i in range(0, len(data["Nodes"])):
if data["Nodes"][i]["Accessible"] is False:
for j in range(0, len(data["Nodes"][i]["Neighbours"])):
data["Nodes"][i]["Neighbours"][j]["Distance"] += 5
new_file = open(newfile, "w")
json.dump(data, new_file)
new_file.close()
def accessible(filename, output):
'''
Reads .json file, returns contents, and writes to 1a.out all accessible stations
@param myParam1: str
@return: None
'''
output = open(output,'w')
# Reads .json file and retrieves contents
with open(filename, "r") as myfile:
content = json.load(myfile)
start = 1
# Checks for accessibility for each station
for station in content["Nodes"]:
if station["Accessible"] == True:
if start == 1:
output.write(station["Name"])
start = 0
else:
output.write(", "+station["Name"])
def conditions(filename1, filename2):
ofile = open("3.out","w") #output file
accessible(filename2, '3_aux.out')
accessibility_distances(filename2, "3_new.json")
oggraph = makegraph(filename2) #making the graph
modgraph = makegraph("3_new.json")
myfile = open(filename1, "r")
lines = myfile.readlines()
lst = [line.rstrip("\n") for line in lines]
output = [element.split(',') for element in lst]
for i in output:
estimate = calc_heuristic(filename2, i[0], i[1])
ogpath = astar_search(oggraph, estimate, i[0], i[1])#gives in form ['location:distance', etc...]
ogstops = [oglocation.split(': ') for oglocation in ogpath]
#splits into [['location','distance'], etc...]
# access_nodes is a list of nodes with accessibility
file_access_node = open('3_aux.out', "r")
access_node = file_access_node.readlines()
access_nodes = access_node[0].split(',')
count = 0 # count for inaccessibility nodes
for i in ogstops:
if i[0] not in access_nodes:
count += 1
modpath = astar_search(modgraph, estimate, i[0], i[1])
modstops = [modlocation.split(': ') for modlocation in modpath]
# if more than 50% of the nodes are inaccessible
if (float(len(ogstops) * 0.5) < count):
cost = max(modstops[-1][1], 2*ogstops[-1][1])
else:
cost = modstops[-1][1]
for j in modstops:
ofile.write(j[0]+", ") #writes all the locations
ofile.write(cost+"\n") #writes the total distance
# Driver Code
if __name__ == "__main__":
conditions("3.in","3.json")
'''
We created a modified json file of the original data wherein for inaccessible locations, the modified data has 5 added to the distances of the neighbouring nodes. We applied the same A star algorithm to the modified data, resulting in the shortest path considering that the inacessible locations have an added length of 5. We checked for whether 50% of the visited nodes were inaccessible, and then compared the final total distances accordingly. After comparison, we gave the shortest path with the correct final distance according to the final distance.
'''