-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset.py
426 lines (344 loc) · 14.5 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import csv
from datetime import datetime
import html
import numpy as np
import re
import spacy
import sys
import torch
from sklearn.feature_extraction import FeatureHasher
from torch.utils.data import Dataset
class FTData(object):
def __init__(self, config):
self.config = config
self.num_classes = config.num_classes
self.train_data_path = os.path.join(config.data_dir, 'train.csv')
self.test_data_path = os.path.join(config.data_dir, 'test.csv')
self.max_len = config.max_len
self.n_over_max_len = 0
self.real_max_len = 0
self.valid_size_per_class = config.valid_size_per_class
np.random.seed(config.seed)
csv.field_size_limit(sys.maxsize)
self.ngram2idx = dict()
self.idx2ngram = dict()
self.ngram2idx['PAD'] = 0
self.idx2ngram[0] = 'PAD'
self.ngram2idx['UNK'] = 1
self.idx2ngram[1] = 'UNK'
self.html_tag_re = re.compile(r'<[^>]+>')
self.train_data, self.test_data = self.load_csv()
self.hashed = False
# except for PAD
if len(self.ngram2idx) > 10 * 1000000 + 1:
print(datetime.now(), 'Hashing Trick ... It may take long time.')
self.hashing_trick()
print(datetime.now(), 'Done')
self.hashed = True
if self.valid_size_per_class > 0:
self.train_data, self.valid_data = \
self.split_tr_va(n_class_examples=config.valid_size_per_class)
self.count_labels()
print('real_max_len', self.real_max_len)
if self.n_over_max_len > 0:
print('n_over_max_len {}/{} ({:.1f}%)'.
format(self.n_over_max_len, len(self.train_data),
100 * self.n_over_max_len / len(self.train_data)))
def load_csv(self):
train_data = list()
test_data = list()
# spacy.prefer_gpu()
# https://spacy.io/usage/facts-figures#benchmarks-models-english
# python3 -m spacy download en_core_web_lg --user
nlp = spacy.load('en_core_web_lg', disable=['parser', 'tagger', 'ner'])
nlp.add_pipe(nlp.create_pipe('sentencizer'))
# train
with open(self.train_data_path, 'r', newline='', encoding='utf-8') as f:
reader = csv.reader(f, delimiter=",", quotechar='"')
for idx, features in enumerate(reader):
y = int(features[0]) - 1
assert 0 <= y < self.num_classes, y
if len(features) == 3: # AG, Sogou, DBpedia, Amz P., Amz F.
x, x_len = self.process_example(features[1], features[2],
nlp,
is_train=True,
padding=args.padding)
elif len(features) == 2: # Yelp P., Yelp F.
x, x_len = self.process_example(features[1], None,
nlp,
is_train=True,
padding=args.padding)
elif len(features) == 4: # Yahoo A.
if features[2]:
f12 = features[1] + ' ' + features[2]
else:
f12 = features[1]
x, x_len = self.process_example(f12, features[3],
nlp,
is_train=True,
padding=args.padding)
else:
raise ValueError
train_data.append([x, x_len, y])
if (idx + 1) % self.config.log_interval == 0:
print(datetime.now(), 'train', idx + 1)
# test
with open(self.test_data_path, 'r', newline='', encoding='utf-8') as f:
reader = csv.reader(f, delimiter=",", quotechar='"')
for idx, features in enumerate(reader):
y = int(features[0]) - 1
assert 0 <= y < self.num_classes, y
if len(features) == 3: # AG, Sogou, DBpedia, Amz P., Amz F.
x, x_len = self.process_example(features[1], features[2],
nlp,
is_train=False,
padding=args.padding)
elif len(features) == 2: # Yelp P., Yelp F.
x, x_len = self.process_example(features[1], None,
nlp,
is_train=False,
padding=args.padding)
elif len(features) == 4: # Yahoo A.
if features[2]:
f12 = features[1] + ' ' + features[2]
else:
f12 = features[1]
x, x_len = self.process_example(f12, features[3],
nlp,
is_train=False,
padding=args.padding)
else:
raise ValueError
test_data.append([x, x_len, y])
if (idx + 1) % self.config.log_interval == 0:
print(datetime.now(), 'test', idx + 1)
print('dictionary size (before hashing) {}'.format(len(self.ngram2idx)))
return train_data, test_data
def process_example(self, text0, text1, nlp, is_train=True, padding=0):
text0 = text0.strip() # Sogou
if text0 and text0[-1] not in ['.', '?', '!']:
text0 = text0 + '.'
# TODO to handle /n (yelp p., yelp f.)
# concat
if text1:
text1 = text1.strip() # DBpedia
title_desc = text0 + ' ' + text1
else:
title_desc = text0
if '\\' in title_desc:
title_desc = title_desc.replace('\\', ' ')
# unescape html
title_desc = html.unescape(title_desc)
# remove html tags
if '<' in title_desc and '>' in title_desc:
title_desc = self.html_tag_re.sub('', title_desc)
# create bow and bag-of-ngrams
doc = nlp(title_desc)
b_o_w = [token.text for token in doc]
# add tags for ngrams
try:
tagged_title_desc = \
'<p> ' + ' </s> '.join([s.text for s in doc.sents]) + \
' </p>'
except ValueError:
# print(title_desc, e)
tagged_title_desc = '<p> ' + title_desc + ' </p>'
doc = nlp(tagged_title_desc)
n_gram = get_ngram([token.text for token in doc],
n=self.config.n_gram)
b_o_ngrams = b_o_w + n_gram
ngs_len = len(b_o_ngrams)
if self.max_len < ngs_len:
# limit max len
if padding > 0:
b_o_ngrams = b_o_ngrams[:self.max_len]
self.n_over_max_len += 1
if self.real_max_len < ngs_len:
self.real_max_len = ngs_len
# update dict.
if is_train:
for ng in b_o_ngrams:
idx = self.ngram2idx.get(ng)
if idx is None:
idx = len(self.ngram2idx)
self.ngram2idx[ng] = idx
self.idx2ngram[idx] = ng
# assign ngram idxs
x = [self.ngram2idx[ng] if ng in self.ngram2idx
else self.ngram2idx['UNK']
for ng in b_o_ngrams]
x_len = len(x)
# padding
if padding > 0:
while len(x) < self.max_len:
x.append(self.ngram2idx['PAD'])
assert len(x) == self.max_len
return x, x_len
def hashing_trick(self):
def lst2dict(lst):
count_dict = dict()
for i in lst:
if str(i) in count_dict:
count_dict[str(i)] += 1
else:
count_dict[str(i)] = 1
return count_dict
def set_hashed(hasher, examples):
f = hasher.transform((lst2dict(e[0]) for e in examples))
for htr, e in zip(f, examples):
sprs2hbow = list()
for idc, d in zip(htr.indices, htr.data):
for _ in range(int(d)):
sprs2hbow.append(idc + 1)
e[0] = sprs2hbow
# bigram 10M, otherwise 100M
n_features = 10 * 1000000 if self.config.n_gram == 2 else 100 * 1000000
h = FeatureHasher(n_features=n_features, alternate_sign=False)
print('FeatureHasher #features', n_features)
set_hashed(h, self.train_data)
set_hashed(h, self.test_data)
def count_labels(self):
def count(data):
count_dict = dict()
for d in data:
if d[-1] not in count_dict:
count_dict[d[-1]] = 1
else:
count_dict[d[-1]] += 1
return count_dict
print('train', count(self.train_data))
if self.valid_size_per_class > 0:
print('valid', count(self.valid_data))
print('test ', count(self.test_data))
def get_dataloaders(self, batch_size=32, shuffle=True, num_workers=4,
pin_memory=True):
train_loader = torch.utils.data.DataLoader(
FTDataset(self.train_data),
shuffle=shuffle,
batch_size=batch_size,
num_workers=num_workers,
collate_fn=self.batchify,
pin_memory=pin_memory
)
valid_loader = None
if self.valid_size_per_class > 0:
valid_loader = torch.utils.data.DataLoader(
FTDataset(self.valid_data),
batch_size=batch_size,
num_workers=num_workers,
collate_fn=self.batchify,
pin_memory=pin_memory
)
test_loader = torch.utils.data.DataLoader(
FTDataset(self.test_data),
batch_size=batch_size,
num_workers=num_workers,
collate_fn=self.batchify,
pin_memory=pin_memory
)
return train_loader, valid_loader, test_loader
def split_tr_va(self, n_class_examples=1900):
count = 0
class_item_set_dict = dict()
item_all = list()
print('Splitting..')
while count < n_class_examples * self.num_classes:
rand_pick = np.random.randint(len(self.train_data))
# print(rand_pick)
label = self.train_data[rand_pick][-1]
if label in class_item_set_dict:
item_set = class_item_set_dict[label]
if len(item_set) < n_class_examples \
and rand_pick not in item_set:
item_set.add(rand_pick)
item_all.append(rand_pick)
count += 1
else:
class_item_set_dict[label] = set()
class_item_set_dict[label].add(rand_pick)
item_all.append(rand_pick)
count += 1
train_data2 = list()
valid_data = list()
for idx, td in enumerate(self.train_data):
if idx in item_all:
valid_data.append(td)
else:
train_data2.append(td)
print(len(train_data2), len(valid_data))
return train_data2, valid_data
def batchify(self, b):
x_len = [e[1] for e in b]
batch_max_len = max(x_len)
x = list()
y = list()
for e in b:
while len(e[0]) < batch_max_len:
e[0].append(self.ngram2idx['PAD'])
assert len(e[0]) == batch_max_len
x.append(e[0])
y.append(e[2])
x = torch.tensor(x, dtype=torch.int64)
x_len = torch.tensor(x_len, dtype=torch.int64)
y = torch.tensor(y, dtype=torch.int64)
return x, x_len, y
def batchify_multihot(self, b):
i = list()
for eidx, e in enumerate(b):
for ev in e[0][:e[1]]:
i.append([eidx, ev])
v = torch.ones(len(i))
i = torch.LongTensor(i)
x = torch.sparse.FloatTensor(i.t(), v,
torch.Size([len(b),
len(self.ngram2idx)]))\
.to_dense()
y = torch.tensor([e[2] for e in b], dtype=torch.int64)
return x, y
def get_ngram(words, n=2):
# TODO add ngrams up to n
return [' '.join(words[i: i+n]) for i in range(len(words)-(n-1))]
class FTDataset(Dataset):
def __init__(self, examples):
self.examples = examples
def __len__(self):
return len(self.examples)
def __getitem__(self, index):
return self.examples[index]
if __name__ == '__main__':
import argparse
import pickle
import pprint
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str,
default='./data/ag_news_csv/')
parser.add_argument('--pickle_name', type=str,
default='ag.pkl')
parser.add_argument('--num_classes', type=int,
default=4)
parser.add_argument('--seed', type=int, default=2019)
parser.add_argument('--valid_size_per_class', type=int, default=0)
parser.add_argument('--n_gram', type=int, default=2)
parser.add_argument('--padding', type=int, default=0)
parser.add_argument('--max_len', type=int, default=467) #
parser.add_argument('--log_interval', type=int, default=10000)
args = parser.parse_args()
pprint.PrettyPrinter().pprint(args.__dict__)
import os
pickle_path = os.path.join(args.data_dir, args.pickle_name)
if os.path.exists(pickle_path):
print(datetime.now(), 'Found an existing pickle', pickle_path)
with open(pickle_path, 'rb') as f_pkl:
ftdata = pickle.load(f_pkl)
print('max len', ftdata.max_len)
print('real max len', ftdata.real_max_len)
print('vocab size', len(ftdata.ngram2idx))
else:
ftdata = FTData(args)
with open(pickle_path, 'wb') as f_pkl:
pickle.dump(ftdata, f_pkl, protocol=4)
tr_loader, _, _ = ftdata.get_dataloaders(batch_size=256, num_workers=4)
# print(len(tr_loader.dataset))
for batch_idx, batch in enumerate(tr_loader):
if (batch_idx + 1) % 100 == 0 or (batch_idx + 1) == len(tr_loader):
print(datetime.now(), 'batch', batch_idx + 1)