-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathray_training.py
51 lines (41 loc) · 1.66 KB
/
ray_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
import argparse
from ray import tune
from ray import air
from mnist_example import run_training
def tune_run(params):
accuracy, backdoor_accuracy = run_training(params)
tune.report(accuracy=accuracy, backdoor_accuracy=backdoor_accuracy,
poison_ratio=100*params['poison_ratio'])
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Ray Tuning')
parser.add_argument('--run_name', required=True, type=str)
parser.add_argument('--build_curve', action='store_true')
parser.add_argument('--run_stage1', default=None, type=str)
parser.add_argument('--run_stage2', default=None, type=str)
parser.add_argument('--run_stage3', default=None, type=str)
parser.add_argument('--run_stage4', default=None, type=str)
parser.add_argument('--target_ratio', default=None, type=float)
args = parser.parse_args()
if args.build_curve:
print("Building curve with default hyperparameters.")
params = {
"poison_ratio": tune.loguniform(0.00001, 0.1),
"lr": 1.0, # tune.sample_from(lambda spec: 10 ** (-10 * np.random.rand())),
"batch_size": 64,
"test_batch_size": 1000,
"epochs": 3,
"gamma": 0.7,
"no_cuda": False,
"no_mps": False,
"seed": 1,
"print": False
}
tuner = tune.Tuner(
tune.with_resources(tune_run,
resources={"cpu": 2, "gpu": 0.5}),
param_space=params,
tune_config=tune.TuneConfig(num_samples=40),
run_config=air.RunConfig(name=args.run_name)
)
results = tuner.fit()