-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
159 lines (139 loc) · 5.17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import math
import re
import gc
import argparse
from enum import Enum, auto
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import LambdaLR
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import datasets, models
from torchvision.transforms import ToTensor, Normalize, Compose
from models import get_model
from datasets import TrainingDataset
from store import Store
from metrics import Metrics, Coef
from formula import *
from utils import now_str, pp, CrossEntropyLoss2d
parser = argparse.ArgumentParser()
parser.add_argument('-w', '--weight')
parser.add_argument('-b', '--batch-size', type=int, default=32)
parser.add_argument('-e', '--epoch', type=int, default=100)
parser.add_argument('-t', '--tile', type=int, default=224)
parser.add_argument('-m', '--model', default='unet11')
parser.add_argument('-d', '--dest', default='weights')
parser.add_argument('--num-workers', type=int, default=4)
parser.add_argument('--cpu', action="store_true")
parser.add_argument('--fake', action="store_true")
parser.add_argument('--target', default='train')
args = parser.parse_args()
STARTING_WEIGHT = args.weight
BATCH_SIZE = args.batch_size
NUM_WORKERS = args.num_workers
EPOCH_COUNT = args.epoch
TILE_SIZE = args.tile
MODEL_NAME = args.model
DEST_BASE_DIR = args.dest
TARGET = args.target
FAKE = args.fake
USE_GPU = not args.cpu and torch.cuda.is_available()
USE_MULTI_GPU = USE_GPU and torch.cuda.device_count() > 1
DEST_DIR = os.path.join(DEST_BASE_DIR, MODEL_NAME)
os.makedirs(DEST_DIR, exist_ok=True)
if not os.path.isdir(DEST_DIR):
print(f'Invalid dest dir: `{DEST_DIR}`')
exit(1)
store = Store()
mode = ('multi' if USE_MULTI_GPU else 'single') if USE_GPU else 'cpu'
device = 'cuda' if USE_GPU else 'cpu'
# EPOCH
first_epoch = 1
if STARTING_WEIGHT:
basename = os.path.splitext(os.path.basename(STARTING_WEIGHT))[0]
nums = re.findall(r'\d+', basename)
if len(nums) > 0 and not nums[-1].isdigit():
print(f'Invalid pt file')
exit(1)
first_epoch = int(nums[-1]) + 1
store.load(STARTING_WEIGHT)
epoch = first_epoch
print(f'Preparing MODEL:{MODEL_NAME} BATCH:{BATCH_SIZE} EPOCH:{EPOCH_COUNT} MODE:{mode} ({now_str()})')
# MDOEL
Model = get_model(MODEL_NAME)
model = Model(num_classes=NUM_CLASSES).to(device)
if store.weights:
model.load_state_dict(store.weights)
if USE_MULTI_GPU:
model = torch.nn.DataParallel(model)
# DATA
I = np.identity(NUM_CLASSES, dtype=np.float32)
def transform_y(arr):
arr[arr > 0] = 1 # to 1bit each color
arr = np.sum(np.multiply(arr, (1, 2, 4, 8)), axis=2) # to 4bit each pixel
arr = arr - 7 # to 3bit + 1
arr[arr < 0] = 0 # fill overrun
return ToTensor()(I[INDEX_MAP[arr]])
data_set = TrainingDataset(
transform_x=Compose([
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]),
transform_y=transform_y,
tile_size=TILE_SIZE,
target=TARGET)
data_loader = DataLoader(data_set, batch_size=BATCH_SIZE, shuffle=True, num_workers=NUM_WORKERS)
# TRAIN
def lr_func_exp(step):
return 0.95 ** step
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
if store.optims:
optimizer.load_state_dict(store.optims)
scheduler = LambdaLR(optimizer, lr_lambda=lr_func_exp, last_epoch=epoch if store.optims else -1)
# criterion = nn.BCELoss()
# criterion = nn.BCEWithLogitsLoss()
criterion = CrossEntropyLoss2d()
metrics = Metrics()
if store.metrics:
metrics.load_state_dict(store.metrics)
if FAKE:
print('STOP TRAINING')
exit(0)
# LOOP
print(f'Starting ({now_str()})')
iter_count = len(data_set) // BATCH_SIZE
while epoch < first_epoch + EPOCH_COUNT:
iter_metrics = Metrics()
lr = scheduler.get_lr()[0]
for i, (inputs, labels) in enumerate(data_loader):
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs).to(device)
loss = criterion(outputs, labels)
coef = Coef.calc(outputs, labels)
iter_metrics.append_loss(loss.item())
iter_metrics.append_coef(coef)
pp('epoch[{ep}]:{i}/{I} iou:{c.pjac:.4f} acc:{c.pdice:.4f} loss:{loss:.4f} lr:{lr:.4f} ({t})'.format(
ep=epoch, i=i+1, I=iter_count, lr=lr, t=now_str(), loss=loss.item(), c=coef))
loss.backward()
optimizer.step()
pp('epoch[{ep}]:Done. iou:{c.pjac:.4f} acc:{c.pdice:.4f} gsi:{c.gsensi:.4f} gsp:{c.gspec:.4f} tsi:{c.tsensi:.4f} tsp:{c.tspec:.4f} loss:{loss:.4f} lr:{lr:.4f} ({t})'.format(
ep=epoch, t=now_str(), lr=lr, loss=iter_metrics.avg('losses'), c=iter_metrics.avg_coef()
))
gc.collect()
print()
weight_path = os.path.join(DEST_DIR, f'{Model.__name__.lower()}_{epoch}.pt')
weights = model.module.cpu().state_dict() if USE_MULTI_GPU else model.cpu().state_dict()
metrics.append_coef(iter_metrics.avg_coef())
metrics.append_loss(iter_metrics.avg_loss())
store.set_states(weights, optimizer.state_dict(), metrics.state_dict())
store.save(weight_path)
print(f'save weights to {weight_path}')
model = model.to(device)
scheduler.step()
epoch += 1
print(f'Finished training\n')