-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcreditscoreapi.py
50 lines (32 loc) · 1.6 KB
/
creditscoreapi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from flask import Flask, request, jsonify
from sklearn.externals import joblib
app = Flask(__name__)
# load the model
MODEL = joblib.load('CreditScore-gnb-v1.0.pkl')
MODEL_LABELS = ['non-default', 'default']
@app.route('/predict')
def predict():
#retrive query parameters related to this request.
RevolvingUtilizationOfUnsecuredLines = request.args.get('RevolvingUtilizationOfUnsecuredLines')
age = request.args.get('age')
NumberOfTime30_59DaysPastDueNotWorse = request.args.get('NumberOfTime30-59DaysPastDueNotWorse')
DebtRatio = request.args.get('DebtRatio')
MonthlyIncome = request.args.get('MonthlyIncome')
NumberOfOpenCreditLinesAndLoans = request.args.get('NumberOfOpenCreditLinesAndLoans')
NumberOfTimes90DaysLate = request.args.get('NumberOfTimes90DaysLate')
NumberRealEstateLoansOrLines = request.args.get('NumberRealEstateLoansOrLines')
NumberOfTime60_89DaysPastDueNotWorse = request.args.get('NumberOfTime60-89DaysPastDueNotWorse')
NumberOfDependents = request.args.get('NumberOfDependents')
features = [[RevolvingUtilizationOfUnsecuredLines, age, NumberOfTime30_59DaysPastDueNotWorse,
DebtRatio, MonthlyIncome, NumberOfOpenCreditLinesAndLoans, NumberOfTimes90DaysLate,
NumberRealEstateLoansOrLines, NumberOfTime60_89DaysPastDueNotWorse, NumberOfDependents]
]
#predict new coming data
label_index = MODEL.predict(features)
# Get the confidence associated with the prediction
label_conf = MODEL.predict_proba(features)
# get the name of the label here
label = MODEL_LABELS[label_index[0]]
return jsonify(status = 'complete', label = label)
if __name__ == '__main__':
app.run(debug = True)