-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtree.c
800 lines (758 loc) · 33.4 KB
/
tree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
// SPDX-License-Identifier: Apache-2.0
// Copyright 2023 Gliim LLC.
// Licensed under Apache License v2. See LICENSE file.
// On the web http://golf-lang.com/ - this file is part of Golf framework.
//
// Tree implementation, in-memory modified AVL with optional double-linked sorted list.
// Around 50% faster than in-memory B-tree variations.
//
#include "golf.h"
// connect parent (p) to child (r) given the direction from the tree node (dir)
#define GG_TREE_SET_PARENT(p, dir, r) if (dir == GG_TREE_LESSER) (p)->lesser_node=(r); else (p)->greater_node=(r)
gg_tree_cursor *gg_cursor; // internal cursor for the current tree operation
// Function prototypes for the implementation
static inline void gg_tree_rotate_left (gg_tree_node *parent_tree, int dir, gg_tree_node *tree);
static inline void gg_tree_rotate_right (gg_tree_node *parent_tree, int dir, gg_tree_node *tree);
void gg_tree_insert(gg_tree_node *parent_tree, int dir, gg_tree_node *tree, void *data);
static inline int gg_tree_compare(char *k2);
void gg_tree_search (gg_tree_node *tree);
static inline void gg_tree_height (gg_tree_node *tree, gg_num *factor);
void gg_tree_show (gg_tree_node *tree, gg_num ident);
static inline void gg_tree_balance (gg_tree_node *parent_tree, int dir, gg_tree_node *tree);
void gg_tree_delete (gg_tree_node *parent_tree, int dir, gg_tree_node *tree);
void gg_tree_find_leaf_del (gg_tree_node *parent_tree, int dir, gg_tree_node *tree_greater_node, gg_tree_node *found);
void gg_tree_search_lesser_equal (gg_tree_node *tree, bool equal);
void gg_tree_search_greater_equal (gg_tree_node *tree, bool equal);
gg_tree_node *gg_tree_node_create(char sorted);
void gg_tree_node_delete(gg_tree_node *tree);
// measuring tree hops (i.e. the cost to search), only for debug build
#ifdef DEBUG
#define GG_TREE_HOPS gg_cursor->root->hops++,
#else
#define GG_TREE_HOPS
#endif
// Evaluate the tree node key k2 with another fixed key obtained from gg_cursor->key,
// i.e. compare fixed key<=>current_tree_node_key. Uses custom eval function if specified
#define GG_TREE_EVAL(k2) (GG_TREE_HOPS gg_tree_compare(k2))
// Default key evaluation function. Compares current tree node key with gg_cursor->key. Return -1, 0, or 1 if node-key lesser, equal or greater than given key.
// Note: POSIX actually specifies that strncmp() works if the length compared is greater than the length of one of the strings (memcmp doesn't do that)
// gg_cursor holds the key and key_len members, which are precomputed. k2 is the tree node key.
static inline int gg_tree_compare(char *k2)
{
GG_TRACE("");
if (gg_cursor->root->key_type == GG_TREE_TYPE_NUM)
{
// key-as positive-integer, compare as numbers written as strings, much faster than atol()
// works in any base
gg_num l1 = gg_cursor->key_len;
gg_num l2 = gg_mem_get_len(gg_mem_get_id(k2));
if (l1<l2) return -1;
if (l1>l2) return 1;
return memcmp(gg_cursor->key,k2,l1);
}
else
{
// compare as classic strings, C collation
gg_num l1 = gg_cursor->key_len;
gg_num l2 = gg_mem_get_len(gg_mem_get_id(k2));
gg_num l = MIN(l1, l2)+1;
return memcmp (gg_cursor->key,k2, l);
}
}
//
// Delete tree node. Actual key and data must be obtained prior and deleted if needed. tree is the node to delete.
//
void gg_tree_node_delete(gg_tree_node *tree)
{
GG_TRACE("");
// tree node deletion is always based on the exact key, meaning you can't say delete the node 'greater than X', you must first
// have the exact key being deleted. Since the key being deleted is already known, there's no point in keeping the key, so we delete it.
gg_free (tree->key);
gg_free (tree);
}
//
// Create tree node. Allocated pointers for linked list if sorted is 1. Returns the node.
//
gg_tree_node *gg_tree_node_create(char sorted)
{
GG_TRACE("");
gg_tree_node *res;
res = gg_calloc (1, sizeof(gg_tree_node) + (sorted==1 ? 2*sizeof (gg_tree_node *):0));
return res;
}
//
// Create root node of the tree.
// res is the tree itself, sorted is true/false based on unsorted clause in new-tree.
//
void gg_tree_create_root (gg_tree *res, bool sorted)
{
GG_TRACE("");
res->root_node = gg_tree_node_create(sorted?1:0); // never used directly, only reference as tree->lesser, this is the actual tree root
res->tree->lesser_node = res->root_node; // GG_TREE_LESSER must always be used with root reference because of this assignment
}
//
// Create the tree itself. key_type is for default eval function (number comparison)
// sorted is true if there's linked list for fast range access. Returns the tree.
//
gg_tree *gg_tree_create(char key_type, bool sorted, bool process)
{
GG_TRACE("");
gg_tree *res = gg_calloc (1, sizeof(gg_tree) + (sorted?2*sizeof (gg_tree_node *):0));
res->process = process;
res->sorted = sorted; // must be set before gg_tree_node_create() below
res->key_type = key_type;
// Tree has a dummy node, which has a lesser pointer that points to an actual root of the tree
// This is so all recursive algorithms work faster without handling exceptions
res->tree = gg_tree_node_create (sorted?1:0); //->tree is a dummy node sitting on top of the actual root
gg_tree_create_root (res, sorted);
return res;
}
//
// Get the height of a node tree. factor is the difference between left and right (if not NULL).
// Node's ->height member is updated by doing this.
// A node without any children has a height of 1, with at least one child it's 2 etc.
//
static inline void gg_tree_height (gg_tree_node *tree, gg_num *factor)
{
GG_TRACE("");
gg_num left_height;
gg_num right_height;
if (tree->lesser_node == NULL) left_height = 0; else left_height = tree->lesser_node->height;
if (tree->greater_node == NULL) right_height = 0; else right_height = tree->greater_node->height;
if (factor) *factor = left_height - right_height; // instead of right-left in classic AVL
if (left_height > right_height) tree->height = left_height+1; else tree->height = right_height+1;
}
//
// Rotate the node to the right. parent_tree is the parent of the node being rotated, dir is the direction from parent
// to the node being rotated, which is tree.
//
static inline void gg_tree_rotate_right (gg_tree_node *parent_tree, int dir, gg_tree_node *tree)
{
// rotate right
// save data to use when shuffling below. Old:
// T
// L G
// LL LG
//
// New:
// L
// LL T
// LG G
//
// balance as above
GG_TREE_SET_PARENT(parent_tree, dir, tree->lesser_node);
gg_tree_node *t = tree->lesser_node->greater_node;
tree->lesser_node->greater_node = tree;
tree->lesser_node = t;
gg_tree_height (tree, NULL);
gg_tree_height (parent_tree, NULL);
}
//
// Rotate the node to the left. parent_tree is the parent of the node being rotated, dir is the direction from parent
// to the node being rotated, which is tree.
//
static inline void gg_tree_rotate_left (gg_tree_node *parent_tree, int dir, gg_tree_node *tree)
{
// rotate left
// save data to use when shuffling below. Old:
// T
// L G
// GL GG
//
// New:
// G
// T GG
// L GL
//
// balance as above
GG_TREE_SET_PARENT(parent_tree, dir, tree->greater_node);
gg_tree_node *t = tree->greater_node->lesser_node;
tree->greater_node->lesser_node = tree;
tree->greater_node = t;
gg_tree_height (tree, NULL);
gg_tree_height (parent_tree, NULL);
}
//
// Balance 'tree', with parent parent_tree coming to 'tree' by dir direction (left/lesser or right/greater)
//
static inline void gg_tree_balance (gg_tree_node *parent_tree, int dir, gg_tree_node *tree)
{
GG_TRACE("");
// get the balance factor of the node to balance
gg_num bal_factor;
gg_tree_height (tree, &bal_factor);
//printf("Left %d Right %d\n", tree->lesser_node?tree->lesser_node->height:0, tree->greater_node?tree->greater_node->height:0);
//assert (-2<=bal_factor && bal_factor<=2);
//Balance factor can be within -2 and 2 inclusive here. The goal is to bring it to 0 or 1/-1.
if (bal_factor >= 2)
{
// This needs balancing to the right, since left is taller. However, if the right subbranch of the left branch is taller than the left subbranch,
// the right rotation will just make the left-mirror-image of the same problem. Thus, we need to left-rotate the right subbranch of the left branch first.
if (tree->lesser_node != NULL)
{
if ((tree->lesser_node->greater_node ? tree->lesser_node->greater_node->height:0) > (tree->lesser_node->lesser_node?tree->lesser_node->lesser_node->height:0)) gg_tree_rotate_left (tree, GG_TREE_LESSER, tree->lesser_node);
}
gg_tree_rotate_right (parent_tree, dir, tree);
// Recalculate the height of the node rotated, as well as its parent
gg_tree_height (tree, NULL);
}
else if (bal_factor <= -2)
{
// This needs balancing to the left, since rigtt is taller. However, if the left subbranch of the right branch is taller than the right subbranch,
// the leftt rotation will just make the right-mirror-image of the same problem. Thus, we need to right-rotate the left subbranch of the right branch first.
if (tree->greater_node != NULL)
{
if ((tree->greater_node->lesser_node ? tree->greater_node->lesser_node->height:0) > (tree->greater_node->greater_node?tree->greater_node->greater_node->height:0)) gg_tree_rotate_right (tree, GG_TREE_GREATER, tree->greater_node);
}
gg_tree_rotate_left (parent_tree, dir, tree);
// Recalculate the height of the node rotated, as well as its parent
gg_tree_height (tree, NULL);
}
//num bf;
//gg_tree_height (tree, &bf);
//assert (bf<=1 && bf>=-1);
}
//
// Insert data with gg_cursor/key/key_len into tree. tree is the node considered, parent_tree/dir is
// its parent and the direction to reach tree (lesser/greater).
// gg_cursor->current/status set.
//
void gg_tree_insert(gg_tree_node *parent_tree, int dir, gg_tree_node *tree, void *data)
{
GG_TRACE("");
GG_UNUSED(dir);
if (tree->key_present == 0)
{
// empty tree node, just add root
tree->key = gg_cursor->key;
//
// There is no checking if existing data is the same as new data because in a tree
// it's always new, there's no updating of data like say in lists
//
gg_mem_set_process (GG_EMPTY_STRING, data, false, true); // empty string because with tree, it's inserting brand new value, there's no old value to compare it to
tree->data = data;
//
tree->height = 1;
tree->key_present = 1;
if (gg_cursor->root->sorted)
{
// setup a linked list if the first one
if (!tree->dlist[GG_TREE_LESSER_LIST]) gg_cursor->root->min = tree;
if (!tree->dlist[GG_TREE_GREATER_LIST]) gg_cursor->root->max = tree;
}
gg_cursor->current = tree;
gg_cursor->status = GG_OKAY;
gg_cursor->root->count++;
return;
}
// tree has data and possibly subnodes
int comparison = GG_TREE_EVAL(tree->key);
if (comparison < 0)
{
// this is lesser key
bool is_new = false;
if (tree->lesser_node == NULL)
{
// create new one if none there, with no key, that's added in gg_tree_insert below
tree->lesser_node = gg_tree_node_create(gg_cursor->root->sorted?1:0);
is_new = true;
if (gg_cursor->root->sorted)
{
// connect new node into linked list, if this tree has that feature
if (tree->dlist[GG_TREE_LESSER_LIST]) tree->dlist[GG_TREE_LESSER_LIST]->dlist[GG_TREE_GREATER_LIST] = tree->lesser_node;
tree->lesser_node->dlist[GG_TREE_LESSER_LIST] = tree->dlist[GG_TREE_LESSER_LIST];
tree->dlist[GG_TREE_LESSER_LIST] = tree->lesser_node;
tree->lesser_node->dlist[GG_TREE_GREATER_LIST] = tree;
}
}
gg_tree_insert (tree, GG_TREE_LESSER, tree->lesser_node, data);
if (!is_new)
{
gg_tree_balance (tree, GG_TREE_LESSER, tree->lesser_node); // don't balance down-node if added a leaf
gg_tree_balance (parent_tree, dir, tree);
}
}
else if (comparison == 0)
{
GG_ERR0; gg_cursor->status = GG_ERR_EXIST;
return;
}
else
{
// this is greater key
bool is_new = false;
if (tree->greater_node == NULL)
{
// create new one if none there, with no key, that's added in gg_tree_insert below
tree->greater_node = gg_tree_node_create(gg_cursor->root->sorted?1:0);
is_new = true;
if (gg_cursor->root->sorted)
{
// connect new node into linked list, if this tree has that feature
if (tree->dlist[GG_TREE_GREATER_LIST]) tree->dlist[GG_TREE_GREATER_LIST]->dlist[GG_TREE_LESSER_LIST] = tree->greater_node;
tree->greater_node->dlist[GG_TREE_GREATER_LIST] = tree->dlist[GG_TREE_GREATER_LIST];
tree->dlist[GG_TREE_GREATER_LIST] = tree->greater_node;
tree->greater_node->dlist[GG_TREE_LESSER_LIST] = tree;
}
}
gg_tree_insert (tree, GG_TREE_GREATER, tree->greater_node, data);
if (!is_new)
{
gg_tree_balance (tree, GG_TREE_GREATER, tree->greater_node); // don't balance down-node if added a leaf
gg_tree_balance (parent_tree, dir, tree);
}
}
//GG_UNUSED(parent_tree);
/*char lh = tree->lesser_node?tree->lesser_node->height:0;
char rh = tree->greater_node?tree->greater_node->height:0;
int f = (lh-rh);
if (f<0) f=-f;
assert(f<2);*/
}
//
// Find lesser or equal key to that of gg_cursor->key. If 'equal' is true, then search for equal as well.
// gg_cursor->current/status set.
//
void gg_tree_search_lesser_equal (gg_tree_node *tree, bool equal)
{
GG_TRACE("");
gg_tree_node *prev_lesser = NULL;
// Start from node 'tree' which is usually given as top root
// go down the tree until found, if there's no key (empty tree), just declare not found below since prev_lesser is NULL
if (tree && tree->key_present != 0) {
while (tree)
{
// check if key lesser, equal, greater
int cmp = GG_TREE_EVAL(tree->key);
if (cmp == 0)
{
// if equal not requested, then go the lesser node (since this is lesser search)
if (!equal) { cmp = -1; }
else
{
// and if equal requested, done
gg_cursor->status = GG_OKAY;
gg_cursor->current = tree;
return;
}
}
// check if key lesser or equal, move down the tree, cannot be 'else' here
// since we set cmp manually in one case above
if (cmp < 0) { tree = tree->lesser_node; }
else
{
prev_lesser = tree;
tree = tree->greater_node;
}
}
}
// Here we come when we exhausted the search and are at some node where key is either lesser or greater
// than the previous node, but in that direction there's nothing (NULL child)
if (prev_lesser != NULL)
{
// this is the last key that was lesser (i.e. key search for was greater), and that's the maximum lesser key
gg_cursor->status = GG_OKAY;
gg_cursor->current = prev_lesser;
return;
}
else
{
// there was no lesser key, so nothing
GG_ERR0; gg_cursor->status = GG_ERR_EXIST;
}
return;
}
//
// Find greater or equal key to that of gg_cursor->key. If 'equal' is true, then search for equal as well.
// gg_cursor->current/status set.
//
void gg_tree_search_greater_equal (gg_tree_node *tree, bool equal)
{
GG_TRACE("");
gg_tree_node *prev_greater = NULL;
// start from the top
// go down the tree until found, if there's no key (empty tree), just declare not found below since prev_greater is NULL
if (tree && tree->key_present != 0) {
while (tree)
{
int cmp = GG_TREE_EVAL(tree->key);
if (cmp == 0)
{
if (!equal) { cmp = 1; } // if equal not requested, go down greater path
else
{
gg_cursor->status = GG_OKAY; // if equal, and 'equal' requested
gg_cursor->current = tree;
return;
}
}
// since we manipulate cmp above, cannot do 'else' here. Move down the tree
if (cmp < 0)
{
prev_greater = tree;
tree = tree->lesser_node;
}
else { tree = tree->greater_node; }
}
}
if (prev_greater != NULL)
{
// the last key found greater than requested, is the minimum greater one
gg_cursor->status = GG_OKAY;
gg_cursor->current = prev_greater;
return;
}
else
{
// no key found greater
GG_ERR0; gg_cursor->status = GG_ERR_EXIST;
}
return;
}
//
// Search for the exact gg_cursor->key
// gg_cursor->current/status set.
//
void gg_tree_search (gg_tree_node *tree)
{
GG_TRACE("");
// go down the tree until found, if there's no key (empty tree), just declare not found below
if (tree && tree->key_present != 0) {
while (tree)
{
int cmp = GG_TREE_EVAL(tree->key);
if (cmp == 0)
{
gg_cursor->status = GG_OKAY;
gg_cursor->current = tree;
return;
}
if (cmp < 0) tree = tree->lesser_node;
else tree = tree->greater_node;
}
}
// if here, none found
GG_ERR0; gg_cursor->status = GG_ERR_EXIST;
return;
}
//
// Search for minimum key. lcurs is the cursor to set, orig_tree is the root of the tree
// gg_cursor->current/status set.
//
void gg_tree_min_f (gg_tree_cursor *lcurs, gg_tree *orig_tree)
{
GG_TRACE("");
gg_cursor = lcurs;
gg_cursor->root = orig_tree;
if (orig_tree->sorted)
{
// If there has a linked list, we have it's head on the left right away
if (orig_tree->count == 0) { GG_ERR0; gg_cursor->status = GG_ERR_EXIST; return;}
gg_cursor->status = GG_OKAY;
gg_cursor->current = orig_tree->min;
}
else
{
// if we don't have a linked list, go down the tree, getting lesser and lesser
// until nothing found. The last one is the smallest.
gg_tree_node *cur = orig_tree->tree->lesser_node;
//this takes care of empty tree
if (orig_tree->count == 0) { GG_ERR0; gg_cursor->status = GG_ERR_EXIST; return;}
gg_cursor->status = GG_OKAY;
while (cur->lesser_node) cur = cur->lesser_node;
gg_cursor->current = cur;
}
}
//
// Search for maximum key. lcurs is the cursor to set, orig_tree is the root of the tree
// gg_cursor->current/status set.
//
void gg_tree_max_f (gg_tree_cursor *lcurs, gg_tree *orig_tree)
{
GG_TRACE("");
gg_cursor = lcurs;
gg_cursor->root = orig_tree;
if (orig_tree->sorted)
{
// if linked list present, get the max, i.e. head on the right
if (orig_tree->count == 0) { GG_ERR0; gg_cursor->status = GG_ERR_EXIST; return;}
gg_cursor->status = GG_OKAY;
gg_cursor->current = orig_tree->max;
}
else
{
// if no linked list, go down greater always, until no greater found
gg_tree_node *cur = orig_tree->tree->lesser_node;
//this takes care of empty tree
if (orig_tree->count == 0) { GG_ERR0; gg_cursor->status = GG_ERR_EXIST; return;}
gg_cursor->status = GG_OKAY;
while (cur->greater_node) cur = cur->greater_node;
gg_cursor->current = cur;
}
}
//
// Part of deleting a node, which is the most complex operation here. Deleting a node (when there's a greater branch from it)
// works by finding the lowest key in the greater node and copying it to node being deleted, then deleting this lowest key node, which is
// easy since it's always a leaf. 'tree_greater_node' is being looked at and we arrived to it from parent tree going in 'dir' direction.
// found is the actual node with found key (gg_cursor->key)
//
void gg_tree_find_leaf_del (gg_tree_node *parent_tree, int dir, gg_tree_node *tree_greater_node, gg_tree_node *found)
{
GG_TRACE("");
// Here we go to the lowest key in this branch of the tree
if (tree_greater_node->lesser_node == NULL)
{
// once no more lesser nodes, this is the node to copy in place of found and then to be deleted
if (gg_cursor->root->sorted)
{
// if linked list, set it up
if (found->dlist[GG_TREE_LESSER_LIST]) found->dlist[GG_TREE_LESSER_LIST]->dlist[GG_TREE_GREATER_LIST] = found->dlist[GG_TREE_GREATER_LIST]; else gg_cursor->root->min = found->dlist[GG_TREE_GREATER_LIST];
if (found->dlist[GG_TREE_GREATER_LIST]) found->dlist[GG_TREE_GREATER_LIST]->dlist[GG_TREE_LESSER_LIST] = found->dlist[GG_TREE_LESSER_LIST]; else gg_cursor->root->max = found->dlist[GG_TREE_LESSER_LIST];
found->dlist[GG_TREE_LESSER_LIST] = tree_greater_node->dlist[GG_TREE_LESSER_LIST];
found->dlist[GG_TREE_GREATER_LIST] = tree_greater_node->dlist[GG_TREE_GREATER_LIST];
if (tree_greater_node->dlist[GG_TREE_LESSER_LIST]) tree_greater_node->dlist[GG_TREE_LESSER_LIST]->dlist[GG_TREE_GREATER_LIST] = found; else gg_cursor->root->min = found;
if (tree_greater_node->dlist[GG_TREE_GREATER_LIST]) tree_greater_node->dlist[GG_TREE_GREATER_LIST]->dlist[GG_TREE_LESSER_LIST] = found; else gg_cursor->root->max = found;
}
// put this leaf node's key/data into one to delete
// swap keys because we want to delete found's key, which is now in tree_greater_node, which we delete below
char *temp = found->key;
found->key = tree_greater_node->key;
tree_greater_node->key = temp;
// no need to swap data, because ->data in found node was already placed in cursor to be returned to end-user,
// and no need to change reference of ->data because it's deleted here and then assigned to variable (in which case it's refcount
// remains the same), or it's deleted in v1.c (in delete-index) and that removes it
// so just overwrite found node's data with the leaf node's data
gg_mem_delete_and_return (found->data); // see comment in the other instance of this function
found->data = tree_greater_node->data;
//
// make sure leaf node's parent is connected property
GG_TREE_SET_PARENT(parent_tree, dir, tree_greater_node->greater_node);
gg_tree_node_delete (tree_greater_node); // delete leaf node which now has key and data of the node we actually are deleting
// no need to balance previous tree_greater_node->greater_node because it can be only 1 extra in height
// and parent_tree is balanced in caller
return;
}
else
{
// go down lesser until above found; each time we back up, balance the lesser part (which is at the bottom the parent of the
// node found above (lesser_node == NULL)
gg_tree_find_leaf_del (tree_greater_node, GG_TREE_LESSER, tree_greater_node->lesser_node, found);
if (tree_greater_node->lesser_node) gg_tree_balance (tree_greater_node, GG_TREE_LESSER, tree_greater_node->lesser_node);
gg_tree_balance (parent_tree, dir, tree_greater_node); // then balance it's parent tree_greater_node
return;
}
return;
}
//
// Delete a node with gg_cursor->key key. tree is the node looked at, and we arrived at it by going in
// 'dir' direction from parent_tree (so dir is either lesser or greater).
//
void gg_tree_delete (gg_tree_node *parent_tree, int dir, gg_tree_node *tree)
{
GG_TRACE("");
void *res = NULL;
// compare fixed key with tree->key
int cmp = GG_TREE_EVAL(tree->key);
if (cmp == 0)
{
// if equal, save pointers to data and key before proceeding to delete.
res = tree->data;
if (tree->greater_node == NULL)
{
// if there is no greater node, then connect parent lesser node with the deleting-node's lesser one, easy case
GG_TREE_SET_PARENT(parent_tree, dir, tree->lesser_node);
if (gg_cursor->root->sorted)
{
// update the linked list. dlist may or may not be here (meaning allocated); it's not if sorted is false.
if (tree->dlist[GG_TREE_LESSER_LIST]) tree->dlist[GG_TREE_LESSER_LIST]->dlist[GG_TREE_GREATER_LIST] = tree->dlist[GG_TREE_GREATER_LIST]; else gg_cursor->root->min = tree->dlist[GG_TREE_GREATER_LIST];
if (tree->dlist[GG_TREE_GREATER_LIST]) tree->dlist[GG_TREE_GREATER_LIST]->dlist[GG_TREE_LESSER_LIST] = tree->dlist[GG_TREE_LESSER_LIST]; else gg_cursor->root->max = tree->dlist[GG_TREE_LESSER_LIST];
}
// delete the node, free it up
gg_mem_delete_and_return (tree->data); // make sure value, if process-scoped, will be un-process-ed if ref was just 1
// since if we're assigning this value to a variable, this variable must not be process-scoped
// or otherwise this would be a leak and memory would grow as this memory would never
// be released
gg_tree_node_delete (tree);
}
else
{
// if there is a greater node, go down to find the lowest key node in the 'greater' branch from the node to be deleted.
// This lowest key node is always leaf and once the node to be deleted is taken out, it can take its place in the tree.
// Then we move that node's key and data to the one we're 'deleting', and actually delete the leaf one.
gg_tree_find_leaf_del (tree, GG_TREE_GREATER, tree->greater_node, tree); // the above is done here.
// balance the node we started down towards, and then it's parent; they all may be affected
if (tree->greater_node) gg_tree_balance (tree, GG_TREE_GREATER, tree->greater_node);
gg_tree_balance (parent_tree, dir, tree);
}
// setup result
gg_cursor->status = GG_OKAY;
gg_cursor->root->count--;
gg_cursor->res = res;
return;
}
else
{
// go down the tree until exhausted; if nothing found, nothing to delete
if (cmp < 0 && tree->lesser_node)
{
gg_tree_delete (tree, GG_TREE_LESSER, tree->lesser_node);
// balance both the tree we went down towards and its parent
if (tree->lesser_node != NULL) gg_tree_balance (tree, GG_TREE_LESSER, tree->lesser_node);
gg_tree_balance (parent_tree, dir, tree);
return;
}
if (cmp > 0 && tree->greater_node)
{
gg_tree_delete (tree, GG_TREE_GREATER, tree->greater_node);
// balance both the tree we went down towards and its parent
if (tree->greater_node) gg_tree_balance (tree, GG_TREE_GREATER, tree->greater_node);
gg_tree_balance (parent_tree, dir, tree);
return;
}
}
// nothing to delete is here
GG_ERR0; gg_cursor->status = GG_ERR_EXIST;
return;
}
//
// Internal support. Check the whole tree to make sure it's perfectly balanced. Used it tests to prove the tree
// is always perfectly balanced no matter what. It simply traverses the whole tree and checks each and every node.
// Returns >0 if problem.
//
gg_num gg_tree_bal (gg_tree_node *tree)
{
GG_TRACE("");
gg_num res = 0;
if (tree->lesser_node) res += gg_tree_bal(tree->lesser_node);
if (tree->greater_node) res += gg_tree_bal (tree->greater_node);
int f = (tree->lesser_node?tree->lesser_node->height:0) - (tree->greater_node?tree->greater_node->height:0);
if (f < -1 || f > 1) {
printf("VELERROR %d %s %s\n", f, tree->lesser_node==NULL?"lesser null":"", tree->greater_node==NULL ? "greater null":"");
return 1+res;
} else return res;
}
//
// Top level API for purge. Deletes all data (key, values and nodes) in the tree.
//
void gg_tree_purge_f (gg_tree *orig_tree)
{
GG_TRACE("");
// first delete all nodes
// static here is to avoid dangling pointer error - this is a local cursor, and then we find the miniminum in
// the tree, and delete all, so in reality there is cursor beyond this function. But gcc doesn't know that.
static gg_tree_cursor tcurs;
while (1)
{
gg_tree_min_f (&tcurs, orig_tree);
if (gg_cursor->status == GG_OKAY)
{
gg_free (gg_cursor->current->data); // this must come before gg_tree_delete_f because the last one in this while loop
// will not be the valid node
gg_tree_delete_f (&tcurs, orig_tree, gg_cursor->current->key);
}
else break;
}
// then delete all structure, which we don't do
//if (orig_tree->count != 0) gg_report_error ("Cannot purge non-empty tree. Delete all nodes first.");
//if (orig_tree->tree->lesser_node != NULL) gg_tree_node_delete (orig_tree->tree->lesser_node);
//gg_free (orig_tree->tree);
//gg_free(orig_tree);
}
//
// Top level API for search. lcurs is the cursor, orig_tree is the tree structure, key/key_len to search for.
// Sets gg_cursor->current to found, or ->status to GG_ERR_EXIST if not found (otherwise GG_OKAY).
// If key_len is -1, sets key_len to strlen() of key
//
void gg_tree_search_f (gg_tree_cursor *lcurs, gg_tree *orig_tree, char *key, gg_num key_len)
{
GG_TRACE("");
gg_cursor = lcurs;
gg_cursor->root = orig_tree;
#ifdef DEBUG
gg_cursor->root->hops=0;
#endif
if (key_len == -1) gg_cursor->key_len = gg_mem_get_len(gg_mem_get_id(key)); else gg_cursor->key_len = key_len;
gg_cursor->key = key;
gg_tree_search (orig_tree->tree->lesser_node);
}
//
// Top level API for delete. lcurs is the cursor, orig_tree is the tree structure, key/key_len to delete.
// Sets gg_cursor->data of deleted node, since key is delete and there's nothing to set.
//
void gg_tree_delete_f (gg_tree_cursor *lcurs, gg_tree *orig_tree, char *key)
{
GG_TRACE("");
gg_cursor = lcurs;
gg_cursor->root = orig_tree;
#ifdef DEBUG
gg_cursor->root->hops=0;
#endif
gg_cursor->key_len = gg_mem_get_len(gg_mem_get_id(key));
gg_cursor->key = key;
if (orig_tree->tree->lesser_node && orig_tree->tree->lesser_node->key_present != 0)
{
gg_tree_delete (orig_tree->tree, GG_TREE_LESSER, orig_tree->tree->lesser_node);
// check if root deleted. If so, create empty root (with no key), or otherwise nothing else will work on the tree.
if (orig_tree->tree->lesser_node == NULL) gg_tree_create_root (orig_tree, orig_tree->sorted);
}
else
{
GG_ERR0; gg_cursor->status = GG_ERR_EXIST;
}
}
//
// Top level API for insert. lcurs is the cursor, orig_tree is the tree structure, key/key_len to delete.
// Sets gg_cursor->cursor to inserted. If key_len is -1, sets key_len to strlen() of key
//
void gg_tree_insert_f (gg_tree_cursor *lcurs, gg_tree *orig_tree, char *key, gg_num key_len, void *data)
{
GG_TRACE("");
gg_cursor = lcurs;
gg_cursor->root = orig_tree;
#ifdef DEBUG
gg_cursor->root->hops=0;
#endif
//
// There is no checking if existing key is the same as new key because in a tree
// it's always new, there's no updating of key like say in lists
//
gg_mem_set_process (GG_EMPTY_STRING, key, false, true); // empty string because with tree, it's inserting brand new value, there's no old value to compare it to
gg_cursor->key = key;
if (key_len == -1) gg_cursor->key_len = gg_mem_get_len(gg_mem_get_id(key)); else gg_cursor->key_len = key_len;
//
gg_tree_insert (orig_tree->tree, GG_TREE_LESSER, orig_tree->tree->lesser_node ,data);
}
//
// Top level API for search <=. lcurs is the cursor, orig_tree is the tree structure, equal is true if it's <= otherwise <
// key/key_len to search for.
// Sets gg_cursor->current to found, or ->status to GG_ERR_EXIST if not found (otherwise GG_OKAY).
//
void gg_tree_search_lesser_equal_f (gg_tree_cursor *lcurs, gg_tree *orig_tree, bool equal, char *key, gg_num key_len)
{
GG_TRACE("");
gg_cursor = lcurs;
gg_cursor->root = orig_tree;
#ifdef DEBUG
gg_cursor->root->hops=0;
#endif
if (key_len == -1) gg_cursor->key_len = gg_mem_get_len(gg_mem_get_id(key)); else gg_cursor->key_len = key_len;
gg_cursor->key = key;
gg_tree_search_lesser_equal (orig_tree->tree->lesser_node, equal);
}
//
// Top level API for search >=. lcurs is the cursor, orig_tree is the tree structure, equal is true if it's >= otherwise >
// key/key_len to search for.
// Sets gg_cursor->current to found, or ->status to GG_ERR_EXIST if not found (otherwise GG_OKAY).
//
void gg_tree_search_greater_equal_f (gg_tree_cursor *lcurs, gg_tree *orig_tree, bool equal, char *key, gg_num key_len)
{
GG_TRACE("");
gg_cursor = lcurs;
gg_cursor->root = orig_tree;
#ifdef DEBUG
gg_cursor->root->hops=0;
#endif
if (key_len == -1) gg_cursor->key_len = gg_mem_get_len(gg_mem_get_id(key)); else gg_cursor->key_len = key_len;
gg_cursor->key = key;
gg_tree_search_greater_equal (orig_tree->tree->lesser_node, equal);
}