Skip to content

Latest commit

 

History

History
82 lines (60 loc) · 4.8 KB

20201015.md

File metadata and controls

82 lines (60 loc) · 4.8 KB

Algorithm

剑指offer-数据流中的中位数

Description

如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。我们使用Insert()方法读取数据流,使用GetMedian()方法获取当前读取数据的中位数。

Solution

import java.util.Collections;
import java.util.PriorityQueue;

public class Solution {
    // smaller堆用于存放相对较小的一半数字,larger堆用于存放相对较大的一半数字
    // 由于默认排序堆顶是最小值,而对于smaller的一半我们更关注最大值,因此使用reverseOrder()来初始化
    private PriorityQueue<Integer> smaller = new PriorityQueue<>(Collections.reverseOrder());
    private PriorityQueue<Integer> larger = new PriorityQueue<>();

    public void Insert(Integer num) {
        // 首次将数字存入smaller,然后在将smaller中堆顶的(较小一半数字的最大值)存入larger
        smaller.add(num);
        larger.add(smaller.poll());
        // 为了保证larger内的数量<=smaller内的数量,进行两个堆大小的比较,并进行转移
        // 此规则下,如果两个堆数量相等,则中位数为两个堆顶数字的平均值;若不相等则为smaller的堆顶数字
        // 也可以使larger存储更多数字,则不相等时,中位数为larger的堆顶数字
        if (larger.size() > smaller.size()) {
            smaller.add(larger.poll());
        }
    }

    public Double GetMedian() {
        // 如前所述,两者大小相等,则求平均
        if (smaller.size() == larger.size()) {
            return ((double)smaller.peek() + (double)larger.peek()) / 2;
        } else { // 否则中位数为smaller的堆顶数字
            return (double)smaller.peek();
        }
    }

}

Discuss

题目描述 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。我们使用Insert()方法读取数据流,使用GetMedian()方法获取当前读取数据的中位数。

解题思路 先用java集合PriorityQueue来设置一个小顶堆和大顶堆 主要的思想是:因为要求的是中位数,那么这两个堆,大顶堆用来存较小的数,从大到小排列; 小顶堆存较大的数,从小到大的顺序排序*,显然中位数就是大顶堆的根节点与小顶堆的根节点和的平均数。 ⭐保证:小顶堆中的元素都大于等于大顶堆中的元素,所以每次塞值,并不是直接塞进去,而是从另一个堆中poll出一个最大(最小)的塞值 ⭐当数目为偶数的时候,将这个值插入大顶堆中,再将大顶堆中根节点(即最大值)插入到小顶堆中; ⭐当数目为奇数的时候,将这个值插入小顶堆中,再讲小顶堆中根节点(即最小值)插入到大顶堆中; ⭐取中位数的时候,如果当前个数为偶数,显然是取小顶堆和大顶堆根结点的平均值;如果当前个数为奇数,显然是取小顶堆的根节点 理解了上面所述的主体思想,下面举个例子辅助验证一下。

例如,传入的数据为:[5,2,3,4,1,6,7,0,8],那么按照要求,输出是"5.00 3.50 3.00 3.50 3.00 3.50 4.00 3.50 4.00 "

那么整个程序的执行流程应该是(用min表示小顶堆,max表示大顶堆):

5先进入大顶堆,然后将大顶堆中最大值放入小顶堆中,此时min=[5],max=[无],avg=[5.00] 2先进入小顶堆,然后将小顶堆中最小值放入大顶堆中,此时min=[5],max=[2],avg=[(5+2)/2]=[3.50] 3先进入大顶堆,然后将大顶堆中最大值放入小顶堆中,此时min=[3,5],max=[2],avg=[3.00] 4先进入小顶堆,然后将小顶堆中最小值放入大顶堆中,此时min=[4,5],max=[3,2],avg=[(4+3)/2]=[3.50] 1先进入大顶堆,然后将大顶堆中最大值放入小顶堆中,此时min=[3,4,5],max=[2,1],avg=[3/00] 6先进入小顶堆,然后将小顶堆中最小值放入大顶堆中,此时min=[4,5,6],max=[3,2,1],avg=[(4+3)/2]=[3.50] 7先进入大顶堆,然后将大顶堆中最大值放入小顶堆中,此时min=[4,5,6,7],max=[3,2,1],avg=[4]=[4.00] 0先进入小顶堆,然后将小顶堆中最大值放入小顶堆中,此时min=[4,5,6,7],max=[3,2,1,0],avg=[(4+3)/2]=[3.50] 8先进入大顶堆,然后将大顶堆中最小值放入大顶堆中,此时min=[4,5,6,7,8],max=[3,2,1,0],avg=[4.00]

Review

Tip

Share