1008. Construct Binary Search Tree from Preorder Traversal
Return the root node of a binary search tree that matches the given preorder traversal.
(Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.)
It's guaranteed that for the given test cases there is always possible to find a binary search tree with the given requirements.
Example 1:
Input: [8,5,1,7,10,12]
Output: [8,5,10,1,7,null,12]
Constraints:
- 1 <= preorder.length <= 100
- 1 <= preorder[i] <= 10^8
- The values of preorder are distinct.
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode bstFromPreorder ( int[] preorder){
if (preorder == null || preorder.length <= 0) return null;
return bstFromPreorder(preorder, 0, preorder.length - 1);
}
public TreeNode bstFromPreorder ( int[] preorder, int left, int right){
// 如果左侧节点索引大于右侧节点索引,说明已经遍历结束
if (left > right) {
return null;
}
// 定义一个根结点,赋值为最左侧节点
TreeNode node = new TreeNode(preorder[left]);
// 从左侧节点下一个节点开始查找
int i = left + 1;
for (; i <= right; i++) {
// 如果当前节点大于根结点,说明节点左侧在左子树,右侧在右子树
if (preorder[i] > preorder[left]){
break;
}
}
// 递归遍历,左侧节点为left+1 到 i-1
node.left = bstFromPreorder(preorder, left + 1, i - 1);
// 右侧节点是大于当前节点的值
node.right = bstFromPreorder(preorder, i, right);
return node;
}
}
给定的输入数组是二叉搜索树按照先序遍历得到的
二叉搜索树:根的值比所有左子树节点值都大,比所有右子树节点值都小
先序遍历:先访问根,然后左节点,最后右节点
根据二叉搜索树和先序遍历的特点,由下图可知,关键是找到第一个大于根节点值的下标,左侧为根节点左子树(5,1,7),右侧(包括其)为根节点右子树(10,12)
因为其为先序遍历,所有左子树的根为左侧第一个节点(5),右子树的根为右侧第一个节点(10)
依次进行,得到最终的树