Skip to content

Latest commit

 

History

History
128 lines (98 loc) · 3.23 KB

20210517.md

File metadata and controls

128 lines (98 loc) · 3.23 KB

Algorithm

225. Implement Stack using Queues

Description

Implement a last in first out (LIFO) stack using only two queues. The implemented stack should support all the functions of a normal queue (push, top, pop, and empty).

Implement the MyStack class:

  • void push(int x) Pushes element x to the top of the stack.
  • int pop() Removes the element on the top of the stack and returns it.
  • int top() Returns the element on the top of the stack.
  • boolean empty() Returns true if the stack is empty, false otherwise.

Notes:

  • You must use only standard operations of a queue, which means only push to back, peek/pop from front, size, and is empty operations are valid.
  • Depending on your language, the queue may not be supported natively. You may simulate a queue using a list or deque (double-ended queue), as long as you use only a queue's standard operations.

Example 1:

Input
["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]
Output
[null, null, null, 2, 2, false]

Explanation
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // return 2
myStack.pop(); // return 2
myStack.empty(); // return False

Constraints:

  • 1 <= x <= 9
  • At most 100 calls will be made to push, pop, top, and empty.
  • All the calls to pop and top are valid.

Follow-up: Can you implement the stack such that each operation is amortized O(1) time complexity? In other words, performing n operations will take overall O(n) time even if one of those operations may take longer. You can use more than two queues.

Solution

class MyStack {

    Queue<Integer> queue1 = new LinkedList<>();
    Queue<Integer> queue2 = new LinkedList<>();

    /** Initialize your data structure here. */
    public MyStack() {
    }

    /** Push element x onto stack. */
    public void push(int x) {
        if(!queue1.isEmpty()) {
    	   queue1.offer(x);
        }else {
    	   queue2.offer(x);
        }
    }

    /** Removes the element on top of the stack and returns that element. */
    public int pop() {
        if(queue1.isEmpty()) {
        	while(queue2.size()>1){
        		queue1.offer(queue2.poll());
        	}
        	return queue2.poll();
        }else {
        	while(queue1.size()>1){
        		queue2.offer(queue1.poll());
        	}
        	return queue1.poll();
        }
    }

    /** Get the top element. */
    public int top() {
        if(queue1.isEmpty()) {
        	while(queue2.size()>1){
        		queue1.offer(queue2.poll());
        	}
            int result = queue2.peek();
            queue1.offer(queue2.poll());
        	return result;
        }else {
        	while(queue1.size()>1){
        		queue2.offer(queue1.poll());
        	}
        	int result = queue1.peek();
            queue2.offer(queue1.poll());
        	return result;
        }
    }

    /** Returns whether the stack is empty. */
    public boolean empty() {
        return queue1.isEmpty()&&queue2.isEmpty();
    }
}

/**
 * Your MyStack object will be instantiated and called as such:
 * MyStack obj = new MyStack();
 * obj.push(x);
 * int param_2 = obj.pop();
 * int param_3 = obj.top();
 * boolean param_4 = obj.empty();
 */

Discuss

Review

Tip

Share