Skip to content

Latest commit

 

History

History
114 lines (90 loc) · 2.17 KB

20220516.md

File metadata and controls

114 lines (90 loc) · 2.17 KB

Algorithm

111. Minimum Depth of Binary Tree

Description

Given a binary tree, find its minimum depth.

The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.

Note: A leaf is a node with no children.

Example 1:

Input: root = [3,9,20,null,null,15,7]
Output: 2

Example 2:

Input: root = [2,null,3,null,4,null,5,null,6]
Output: 5

Constraints:

  • The number of nodes in the tree is in the range [0, 105].
  • -1000 <= Node.val <= 1000

Solution

DFS

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public int minDepth(TreeNode root) {
        if(root==null){
            return 0;
        }
        int left = minDepth(root.left);
        int right = minDepth(root.right);
        // 这一步很重要,注意只有一个分支的链表二叉树
        if(left == 0 || right == 0){
            return left+right+1;
        }
        return left<right?left+1:right+1;
    }
}

BFS

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public int minDepth(TreeNode root) {
        if(root == null){
            return 0;
        }
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        int depth = 1;
        while(!queue.isEmpty()){
            int size = queue.size();
            for(int i =0;i<size;i++){
                TreeNode temp = queue.poll();
                if(temp.left==null && temp.right==null){
                    return depth;
                }
                if(temp.left!=null){
                    queue.offer(temp.left);
                }
                if(temp.right!=null){
                    queue.offer(temp.right);
                }
            }
            depth++;
        }
        return depth;
    }
}

Discuss

Review

Tip

Share