Skip to content

Latest commit

 

History

History
116 lines (88 loc) · 2.21 KB

20220607.md

File metadata and controls

116 lines (88 loc) · 2.21 KB

Algorithm

268. Missing Number

Description

Given an array nums containing n distinct numbers in the range [0, n], return the only number in the range that is missing from the array.

Example 1:

Input: nums = [3,0,1]
Output: 2
Explanation: n = 3 since there are 3 numbers, so all numbers are in the range [0,3]. 2 is the missing number in the range since it does not appear in nums.

Example 2:

Input: nums = [0,1]
Output: 2
Explanation: n = 2 since there are 2 numbers, so all numbers are in the range [0,2]. 2 is the missing number in the range since it does not appear in nums.

Example 3:

Input: nums = [9,6,4,2,3,5,7,0,1]
Output: 8
Explanation: n = 9 since there are 9 numbers, so all numbers are in the range [0,9]. 8 is the missing number in the range since it does not appear in nums.

Constraints:

  • n == nums.length
  • 1 <= n <= 104
  • 0 <= nums[i] <= n
  • All the numbers of nums are unique.

Follow up: Could you implement a solution using only O(1) extra space complexity and O(n) runtime complexity?

Solution

位运算

class Solution {
    public int missingNumber(int[] nums) {
       int res=0;
       for(int i=0;i<nums.length;i++){
           res^=(i+1)^nums[i];
       }
       return res;
    }
}

等差数列(加法交换律和结合律)

class Solution {
    public int missingNumber(int[] nums) {
       int res=0;
       int n = nums.length;
       int sum = (n+1)*n /2;
       for(int i=0;i<nums.length;i++){
           res+=nums[i];
       }
       return sum-res;
    }
}

等差数列-防止溢出

class Solution {
    public int missingNumber(int[] nums) {
       int res = nums.length;
       for(int i=0;i<nums.length;i++){
           res+=(i-nums[i]);
       }
       return res;
    }
}

HashSet-空间复杂度O(n)

class Solution {
    public int missingNumber(int[] nums) {
       Set<Integer> set = new HashSet<>();
       for(int i=0;i<nums.length;i++){
           set.add(nums[i]);
       }
       for(int i=0;i<nums.length;i++){
           if(!set.contains(i)){
               return i;
           }
       }
       return nums.length;
    }
}

Discuss

Review

Tip

Share