Skip to content

Latest commit

 

History

History
70 lines (47 loc) · 1.51 KB

20220609.md

File metadata and controls

70 lines (47 loc) · 1.51 KB

Algorithm

312. Burst Balloons

Description

You are given n balloons, indexed from 0 to n - 1. Each balloon is painted with a number on it represented by an array nums. You are asked to burst all the balloons.

If you burst the ith balloon, you will get nums[i - 1] * nums[i] * nums[i + 1] coins. If i - 1 or i + 1 goes out of bounds of the array, then treat it as if there is a balloon with a 1 painted on it.

Return the maximum coins you can collect by bursting the balloons wisely.

Example 1:

Input: nums = [3,1,5,8]
Output: 167
Explanation:
nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
coins =  3*1*5    +   3*5*8   +  1*3*8  + 1*8*1 = 167

Example 2:

Input: nums = [1,5]
Output: 10

Constraints:

  • n == nums.length
  • 1 <= n <= 300
  • 0 <= nums[i] <= 100

Solution

class Solution {
    public int maxCoins(int[] inums) {
        int[] nums = new int[inums.length + 2];
        int n = 1;
        for (int x : inums) if (x > 0) nums[n++] = x;
        nums[0] = nums[n++] = 1;


        int[][] dp = new int[n][n];
        for (int k = 2; k < n; ++k)
            for (int left = 0; left < n - k; ++left) {
                int right = left + k;
                for (int i = left + 1; i < right; ++i)
                    dp[left][right] = Math.max(dp[left][right],
                    nums[left] * nums[i] * nums[right] + dp[left][i] + dp[i][right]);
            }

        return dp[0][n - 1];
    }
}

Discuss

Review

Tip

Share