-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsbgnn.py
461 lines (359 loc) · 17.1 KB
/
sbgnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
#!/usr/bin/env python3
#-*- coding: utf-8 -*-
"""
@author: huangjunjie
@file: sbgnn.py
@time: 2021/03/28
"""
import os
import sys
import time
import random
import argparse
import subprocess
from collections import defaultdict
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import f1_score, roc_auc_score
from tqdm import tqdm
import logging
# https://docs.python.org/3/howto/logging.html#logging-advanced-tutorial
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
parser = argparse.ArgumentParser()
parser.add_argument('--dirpath', default=BASE_DIR, help='Current Dir')
parser.add_argument('--device', type=str, default='cpu', help='Devices')
parser.add_argument('--dataset_name', type=str, default='house1to10-1')
parser.add_argument('--a_emb_size', type=int, default=32, help='Embeding A Size')
parser.add_argument('--b_emb_size', type=int, default=32, help='Embeding B Size')
parser.add_argument('--weight_decay', type=float, default=1e-5, help='Weight Decay')
parser.add_argument('--lr', type=float, default=0.005, help='Learning Rate')
parser.add_argument('--seed', type=int, default=13, help='Random seed')
parser.add_argument('--epoch', type=int, default=2000, help='Epoch')
parser.add_argument('--gnn_layer_num', type=int, default=2, help='GNN Layer')
parser.add_argument('--batch_size', type=int, default=500, help='Batch Size')
parser.add_argument('--dropout', type=float, default=0.5, help='Dropout')
parser.add_argument('--agg', type=str, default='AttentionAggregator', choices=['AttentionAggregator', 'MeanAggregator'], help='Aggregator')
args = parser.parse_args()
# TODO
exclude_hyper_params = ['dirpath', 'device']
hyper_params = dict(vars(args))
for exclude_p in exclude_hyper_params:
del hyper_params[exclude_p]
hyper_params = "~".join([f"{k}-{v}" for k,v in hyper_params.items()])
from torch.utils.tensorboard import SummaryWriter
# https://pytorch.org/docs/stable/tensorboard.html
tb_writer = SummaryWriter(comment=hyper_params)
def setup_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
# setup seed
setup_seed(args.seed)
from common import DATA_EMB_DIC
# args.device = 'cpu'
args.device = torch.device(args.device)
class MeanAggregator(nn.Module):
def __init__(self, a_dim, b_dim):
super(MeanAggregator, self).__init__()
self.out_mlp_layer = nn.Sequential(
nn.Linear(b_dim, b_dim)
)
def forward(self, edge_dic_list: dict, feature_a, feature_b, node_num_a, node_num_b):
edges = []
for node in range(node_num_a):
neighs = np.array(edge_dic_list[node]).reshape(-1, 1)
a = np.array([node]).repeat(len(neighs)).reshape(-1, 1)
edges.append(np.concatenate([a, neighs], axis=1))
edges = np.vstack(edges)
edges = torch.LongTensor(edges).to(args.device)
matrix = torch.sparse_coo_tensor(edges.t(), torch.ones(edges.shape[0]), torch.Size([node_num_a, node_num_b]), device=args.device)
row_sum = torch.spmm(matrix, torch.ones(size=(node_num_b, 1)).to(args.device))
row_sum = torch.where(row_sum == 0, torch.ones(row_sum.shape).to(args.device), row_sum)
new_emb = feature_b
new_emb = self.out_mlp_layer(new_emb)
output_emb = torch.spmm(matrix, new_emb)
output_emb = output_emb.div(row_sum)
return output_emb
class AttentionAggregator(nn.Module):
def __init__(self, a_dim, b_dim):
super(AttentionAggregator, self).__init__()
self.out_mlp_layer = nn.Sequential(
nn.Linear(b_dim, b_dim),
)
self.a = nn.Parameter(torch.FloatTensor(a_dim + b_dim, 1))
nn.init.kaiming_normal_(self.a.data)
def forward(self, edge_dic_list: dict, feature_a, feature_b, node_num_a, node_num_b):
edges = []
for node in range(node_num_a):
neighs = np.array(edge_dic_list[node]).reshape(-1, 1)
a = np.array([node]).repeat(len(neighs)).reshape(-1, 1)
edges.append(np.concatenate([a, neighs], axis=1))
edges = np.vstack(edges)
edges = torch.LongTensor(edges).to(args.device)
new_emb = feature_b
new_emb = self.out_mlp_layer(new_emb)
edge_h_2 = torch.cat([feature_a[edges[:, 0]], new_emb[edges[:, 1]] ], dim=1)
edges_h = torch.exp(F.elu(torch.einsum("ij,jl->il", [edge_h_2, self.a]), 0.1))
matrix = torch.sparse_coo_tensor(edges.t(), edges_h[:, 0], torch.Size([node_num_a, node_num_b]), device=args.device)
row_sum = torch.sparse.mm(matrix, torch.ones(size=(node_num_b, 1)).to(args.device))
row_sum = torch.where(row_sum == 0, torch.ones(row_sum.shape).to(args.device), row_sum)
output_emb = torch.sparse.mm(matrix, new_emb)
output_emb = output_emb.div(row_sum)
return output_emb
class SBGNNLayer(nn.Module):
def __init__(self, edgelist_a_b_pos, edgelist_a_b_neg, edgelist_b_a_pos, edgelist_b_a_neg,\
edgelist_a_a_pos, edgelist_a_a_neg, edgelist_b_b_pos, edgelist_b_b_neg, \
dataset_name=args.dataset_name, emb_size_a=32, emb_size_b=32, aggregator=MeanAggregator):
super(SBGNNLayer, self).__init__()
#
self.set_a_num, self.set_b_num = DATA_EMB_DIC[dataset_name]
# self.feature_a = feature_a
# self.feature_b = feature_b
self.edgelist_a_b_pos, self.edgelist_a_b_neg, self.edgelist_b_a_pos, self.edgelist_b_a_neg = \
edgelist_a_b_pos, edgelist_a_b_neg, edgelist_b_a_pos, edgelist_b_a_neg
self.edgelist_a_a_pos, self.edgelist_a_a_neg, self.edgelist_b_b_pos, self.edgelist_b_b_neg = \
edgelist_a_a_pos, edgelist_a_a_neg, edgelist_b_b_pos, edgelist_b_b_neg
self.agg_a_from_b_pos = aggregator(emb_size_b, emb_size_a)
self.agg_a_from_b_neg = aggregator(emb_size_b, emb_size_a)
self.agg_a_from_a_pos = aggregator(emb_size_a, emb_size_a)
self.agg_a_from_a_neg = aggregator(emb_size_a, emb_size_a)
self.agg_b_from_a_pos = aggregator(emb_size_a, emb_size_b)
self.agg_b_from_a_neg = aggregator(emb_size_a, emb_size_b)
self.agg_b_from_b_pos = aggregator(emb_size_b, emb_size_b)
self.agg_b_from_b_neg = aggregator(emb_size_b, emb_size_b)
self.update_func = nn.Sequential(
nn.Dropout(args.dropout),
nn.Linear(emb_size_a * 5, emb_size_a * 2),
nn.PReLU(),
nn.Linear(emb_size_b * 2, emb_size_b)
)
def forward(self, feature_a, feature_b):
# assert feature_a.size()[0] == self.set_a_num, 'set_b_num error'
# assert feature_b.size()[0] == self.set_b_num, 'set_b_num error'
node_num_a, node_num_b = self.set_a_num, self.set_b_num
m_a_from_b_pos = self.agg_a_from_b_pos(self.edgelist_a_b_pos, feature_a, feature_b, node_num_a, node_num_b)
m_a_from_b_neg = self.agg_a_from_b_neg(self.edgelist_a_b_neg, feature_a, feature_b, node_num_a, node_num_b)
m_a_from_a_pos = self.agg_a_from_a_pos(self.edgelist_a_a_pos, feature_a, feature_a, node_num_a, node_num_a)
m_a_from_a_neg = self.agg_a_from_a_neg(self.edgelist_a_a_neg, feature_a, feature_a, node_num_a, node_num_a)
new_feature_a = torch.cat([feature_a, m_a_from_b_pos, m_a_from_b_neg, m_a_from_a_pos, m_a_from_a_neg], dim=1)
new_feature_a = self.update_func(new_feature_a)
m_b_from_a_pos = self.agg_b_from_a_pos(self.edgelist_b_a_pos, feature_b, feature_a, node_num_b, node_num_a)
m_b_from_a_neg = self.agg_b_from_a_neg(self.edgelist_b_a_neg, feature_b, feature_a, node_num_b, node_num_a)
m_b_from_b_pos = self.agg_b_from_b_pos(self.edgelist_b_b_pos, feature_b, feature_b, node_num_b, node_num_b)
m_b_from_b_neg = self.agg_b_from_b_neg(self.edgelist_b_b_neg, feature_b, feature_b, node_num_b, node_num_b)
new_feature_b = torch.cat([feature_b, m_b_from_a_pos, m_b_from_a_neg, m_b_from_b_pos, m_b_from_b_neg], dim=1)
new_feature_b = self.update_func(new_feature_b)
return new_feature_a, new_feature_b
class SBGNN(nn.Module):
def __init__(self, edgelists,
dataset_name=args.dataset_name, layer_num=1, emb_size_a=32, emb_size_b=32, aggregator=AttentionAggregator):
super(SBGNN, self).__init__()
# assert edgelists must compelte
assert len(edgelists) == 8, 'must 8 edgelists'
edgelist_a_b_pos, edgelist_a_b_neg, edgelist_b_a_pos, edgelist_b_a_neg,\
edgelist_a_a_pos, edgelist_a_a_neg, edgelist_b_b_pos, edgelist_b_b_neg = edgelists
self.set_a_num, self.set_b_num = DATA_EMB_DIC[dataset_name]
self.features_a = nn.Embedding(self.set_a_num, emb_size_a)
self.features_b = nn.Embedding(self.set_b_num, emb_size_b)
self.features_a.weight.requires_grad = True
self.features_b.weight.requires_grad = True
# features_a = features_a.to(args.device)
# features_b = features_b.to(args.device)
self.layers = nn.ModuleList(
[SBGNNLayer(edgelist_a_b_pos, edgelist_a_b_neg, edgelist_b_a_pos, edgelist_b_a_neg,\
edgelist_a_a_pos, edgelist_a_a_neg, edgelist_b_b_pos, edgelist_b_b_neg, \
dataset_name=dataset_name, emb_size_a=32, emb_size_b=32, aggregator=aggregator) for _ in range(layer_num)]
)
# self.mlp = nn.Sequential(
# nn.Linear(emb_size_a * 3, 30),
# nn.PReLU(),
# nn.Linear(30, 1),
# nn.Sigmoid()
# )
# def init_weights(m):
# if type(m) == nn.Linear:
# torch.nn.init.xavier_uniform_(m.weight)
# m.bias.data.fill_(0.01)
# self.apply(init_weights)
def get_embeddings(self):
emb_a = self.features_a(torch.arange(self.set_a_num).to(args.device))
emb_b = self.features_b(torch.arange(self.set_b_num).to(args.device))
for m in self.layers:
emb_a, emb_b = m(emb_a, emb_b)
return emb_a, emb_b
def forward(self, edge_lists):
embedding_a, embedding_b = self.get_embeddings()
#### with mlp
# emb_concat = torch.cat([embedding_a[edge_lists[:, 0]], embedding_b[edge_lists[:, 1]], embedding_a[edge_lists[:, 0]] * embedding_b[edge_lists[:, 1]] ], dim=1)
# y = self.mlp(emb_concat).squeeze(-1)
# return y
## without mlp
y = torch.einsum("ij, ij->i", [embedding_a[edge_lists[:, 0]] , embedding_b[edge_lists[:, 1]] ])
return torch.sigmoid(y)
def loss(self, pred_y, y):
assert y.min() >= 0, 'must 0~1'
assert pred_y.size() == y.size(), 'must be same length'
pos_ratio = y.sum() / y.size()[0]
weight = torch.where(y > 0.5, 1./pos_ratio, 1./(1-pos_ratio))
# weight = torch.where(y > 0.5, (1-pos_ratio), pos_ratio)
return F.binary_cross_entropy(pred_y, y, weight=weight)
# =========== function
def load_data(dataset_name):
train_file_path = os.path.join('experiments-data', f'{dataset_name}_training.txt')
val_file_path = os.path.join('experiments-data', f'{dataset_name}_validation.txt')
test_file_path = os.path.join('experiments-data', f'{dataset_name}_testing.txt')
train_edgelist = []
with open(train_file_path) as f:
for ind, line in enumerate(f):
if ind == 0: continue
a, b, s = map(int, line.split('\t'))
train_edgelist.append((a, b, s))
val_edgelist = []
with open(val_file_path) as f:
for ind, line in enumerate(f):
if ind == 0: continue
a, b, s = map(int, line.split('\t'))
val_edgelist.append((a, b, s))
test_edgelist = []
with open(test_file_path) as f:
for ind, line in enumerate(f):
if ind == 0: continue
a, b, s = map(int, line.split('\t'))
test_edgelist.append((a, b, s))
return np.array(train_edgelist), np.array(val_edgelist), np.array(test_edgelist)
# ============= load data
def load_edgelists(edge_lists):
edgelist_a_b_pos, edgelist_a_b_neg = defaultdict(list), defaultdict(list)
edgelist_b_a_pos, edgelist_b_a_neg = defaultdict(list), defaultdict(list)
edgelist_a_a_pos, edgelist_a_a_neg = defaultdict(list), defaultdict(list)
edgelist_b_b_pos, edgelist_b_b_neg = defaultdict(list), defaultdict(list)
for a, b, s in edge_lists:
if s == 1:
edgelist_a_b_pos[a].append(b)
edgelist_b_a_pos[b].append(a)
elif s== -1:
edgelist_a_b_neg[a].append(b)
edgelist_b_a_neg[b].append(a)
else:
print(a, b, s)
raise Exception("s must be -1/1")
edge_list_a_a = defaultdict(lambda: defaultdict(int))
edge_list_b_b = defaultdict(lambda: defaultdict(int))
for a, b, s in edge_lists:
for b2 in edgelist_a_b_pos[a]:
edge_list_b_b[b][b2] += 1 * s
for b2 in edgelist_a_b_neg[a]:
edge_list_b_b[b][b2] -= 1 * s
for a2 in edgelist_b_a_pos[b]:
edge_list_a_a[a][a2] += 1 * s
for a2 in edgelist_b_a_neg[b]:
edge_list_a_a[a][a2] -= 1 * s
for a1 in edge_list_a_a:
for a2 in edge_list_a_a[a1]:
v = edge_list_a_a[a1][a2]
if a1 == a2: continue
if v > 0:
edgelist_a_a_pos[a1].append(a2)
elif v < 0:
edgelist_a_a_neg[a1].append(a2)
for b1 in edge_list_b_b:
for b2 in edge_list_b_b[b1]:
v = edge_list_b_b[b1][b2]
if b1 == b2: continue
if v > 0:
edgelist_b_b_pos[b1].append(b2)
elif v < 0:
edgelist_b_b_neg[b1].append(b2)
return edgelist_a_b_pos, edgelist_a_b_neg, edgelist_b_a_pos, edgelist_b_a_neg,\
edgelist_a_a_pos, edgelist_a_a_neg, edgelist_b_b_pos, edgelist_b_b_neg
@torch.no_grad()
def test_and_val(pred_y, y, mode='val', epoch=0):
preds = pred_y.cpu().numpy()
y = y.cpu().numpy()
preds[preds >= 0.5] = 1
preds[preds < 0.5] = 0
test_y = y
auc = roc_auc_score(test_y, preds)
f1 = f1_score(test_y, preds)
macro_f1 = f1_score(test_y, preds, average='macro')
micro_f1 = f1_score(test_y, preds, average='micro')
pos_ratio = np.sum(test_y) / len(test_y)
res = {
f'{mode}_auc': auc,
f'{mode}_f1' : f1,
f'{mode}_pos_ratio': pos_ratio,
f'{mode}_epoch': epoch,
f'{mode}_macro_f1' : macro_f1,
f'{mode}_micro_f1' : micro_f1,
}
for k, v in res.items():
mode ,_, metric = k.partition('_')
tb_writer.add_scalar(f'{metric}/{mode}', v, epoch)
# tb_writer.add_scalar( f'{mode}_auc', auc, epoch)
# tb_writer.add_scalar( f'{mode}_f1', auc, epoch)
return res
def run():
train_edgelist, val_edgelist, test_edgelist = load_data(args.dataset_name)
set_a_num, set_b_num = DATA_EMB_DIC[args.dataset_name]
train_y = np.array([i[-1] for i in train_edgelist])
val_y = np.array([i[-1] for i in val_edgelist])
test_y = np.array([i[-1] for i in test_edgelist])
train_y = torch.from_numpy( (train_y + 1)/2 ).float().to(args.device)
val_y = torch.from_numpy( (val_y + 1)/2 ).float().to(args.device)
test_y = torch.from_numpy( (test_y + 1)/2 ).float().to(args.device)
# get edge lists
edgelists = load_edgelists(train_edgelist)
if args.agg == 'MeanAggregator':
agg = MeanAggregator
else:
agg = AttentionAggregator
model = SBGNN(edgelists, dataset_name=args.dataset_name, layer_num=args.gnn_layer_num, aggregator=agg)
model = model.to(args.device)
print(model.train())
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
res_best = {'val_auc': 0}
for epoch in tqdm(range(1, args.epoch + 2)):
# train
model.train()
optimizer.zero_grad()
pred_y = model(train_edgelist)
loss = model.loss(pred_y, train_y)
loss.backward()
optimizer.step()
print('loss', loss)
res_cur = {}
# if epoch % 5 == 0:
if True:
# val/test
model.eval()
pred_y = model(train_edgelist)
res = test_and_val(pred_y, train_y, mode='train', epoch=epoch)
res_cur.update(res)
pred_val_y = model(val_edgelist)
res = test_and_val(pred_val_y, val_y, mode='val', epoch=epoch)
res_cur.update(res)
pred_test_y = model(test_edgelist)
res = test_and_val(pred_test_y, test_y, mode='test', epoch=epoch)
res_cur.update(res)
if res_cur['val_auc'] > res_best['val_auc']:
res_best = res_cur
print(res_best)
print('Done! Best Results:')
print(res_best)
print_list = ['test_auc', 'test_f1', 'test_macro_f1', 'test_micro_f1']
for i in print_list:
print(i, res_best[i], end=' ')
def main():
print(" ".join(sys.argv))
this_fpath = os.path.abspath(__file__)
t = subprocess.run(f'cat {this_fpath}', shell=True, stdout=subprocess.PIPE)
print(str(t.stdout, 'utf-8'))
print('=' * 20)
run()
if __name__ == "__main__":
main()