-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexchng.f90
220 lines (207 loc) · 6.55 KB
/
exchng.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
! File created at Fri Jun 5 21:58:56 PDT 2020
! Original source code: exchng.f
subroutine exchng (rho,cvi,cro,ilev,jlev,klev,h,s,v,ia,ib)
implicit double precision (a-h,o-z)
!
! -----------------------------------------------------------------
! This subroutine fills in the exchange matrix elements of h
! and s between arrangements ia and ib at hyperradius rho.
! Last modified 9/6/99.
! -----------------------------------------------------------------
!
! common blocks
!
common /arrays/ mro,mvi,nvi,n
common /ranges/ rmin,rmax,smax
common /rotors/ jtot,ipar,jpar,jmax,kmin,kmax
!
! input arrays
!
dimension cvi(nvi,n),cro(3,n)
dimension ilev(n),jlev(n),klev(n)
dimension h(n,n),s(n,n),v(mro,mvi)
!
! local arrays
!
parameter (nblock = 32)
! dimension wro(mro),xro(mro)
allocatable wro(:),xro(:)
! dimension wvi(mvi),xvi(mvi)
allocatable wvi(:),xvi(:)
! dimension ab2(0:jmax),pvi(n)
allocatable ab2(:),pvi(:)
! dimension pro(0:jmax,0:kmax+1)
allocatable pro(:,:)
! dimension dro(0:kmax+1,0:kmax+1)
allocatable dro(:,:)
! dimension prv(n,nblock,0:kmax+1)
allocatable prv(:,:,:)
! dimension hrv(nblock,0:jmax,0:kmax+1)
allocatable hrv(:,:,:)
! dimension srv(nblock,0:jmax,0:kmax+1)
allocatable srv(:,:,:)
! dimension hro(n,0:jmax,0:kmax+1)
allocatable hro(:,:,:)
! dimension sro(n,0:jmax,0:kmax+1)
allocatable sro(:,:,:)
allocate (wro(mro),xro(mro))
allocate (wvi(mvi),xvi(mvi))
allocate (ab2(0:jmax),pvi(n))
allocate (pro(0:jmax,0:kmax+1))
allocate (dro(0:kmax+1,0:kmax+1))
allocate (prv(n,nblock,0:kmax+1))
allocate (hrv(nblock,0:jmax,0:kmax+1))
allocate (srv(nblock,0:jmax,0:kmax+1))
allocate (hro(n,0:jmax,0:kmax+1))
allocate (sro(n,0:jmax,0:kmax+1))
!
! arrangement indices
!
call arrang (ilev,n,jpar,ia,nla,nha,na)
call arrang (ilev,n,jpar,ib,nlb,nhb,nb)
if (na.lt.1 .or. nb.lt.1) return
!
! projection ranges (allowing for Coriolis terms)
!
kamax = kmax
if (kmax .lt. min(jtot,jmax)) kamax = kmax+1
kbmax = kmax
!
! A+B2 permutation symmetry
!
do j = 0,jmax
ab2(j) = 1.d0
if (jpar .ne. 0) then
if (ia+ib .eq. 3) ab2(j) = sqrt(2.d0)
if (ia+ib .eq. 5) ab2(j) = jpar*(-1)**j
endif
enddo
!
! quadrature rules
!
call qrot (mro,wro,xro)
tmin = 0.d0
tmax = asin(min(1.d0,smax/rho))
call qvib (tmin,tmax,mvi,wvi,xvi)
!
! loop over quadrature points
!
do kvi = 1,mvi
inner = 0
iblock = 0
do kro = 1,mro
ta = xvi(kvi)
cosa = xro(kro)
!
! coordinate transformation
!
call coords (ta,cosa,ia,tb,cosb,ib,xab)
if (tb .lt. tmax) then
inner = inner+1
if (inner .eq. 1) then
do ka = kmin,kamax
do ja = ka,jmax
do lb = nlb,nhb
hro(lb,ja,ka) = 0.d0
sro(lb,ja,ka) = 0.d0
enddo
enddo
enddo
endif
iblock = iblock+1
!
! jacobian factor and interaction potential
!
weight = wro(kro)*wvi(kvi)
sab = weight*sin(2.d0*ta)/sin(2.d0*tb)
vab = sab*v(kro,kvi)
!
! parity-adapted reduced rotation matrix elements
!
do kb = kmin,kbmax
do ka = kmin,kamax
dro(ka,kb) = rotmel(jtot,ipar,ka,kb,xab)
enddo
enddo
!
! rovibrational functions in arrangement ib
!
call prot (pro,jmax,kbmax,cosb)
call pvib (tmin,tb,tmax,cvi(1,nlb),nvi,nb,pvi(nlb),0)
do lb = nlb,nhb
jb = jlev(lb)
kb = klev(lb)
pb = ab2(jb)*pro(jb,kb)*pvi(lb)
do ka = kmin,kamax
prv(lb,iblock,ka) = dro(ka,kb)*pb
enddo
enddo
!
! rotational functions in arrangement ia
!
call prot (pro,jmax,kamax,cosa)
do ka = kmin,kamax
do ja = ka,jmax
hrv(iblock,ja,ka) = vab*pro(ja,ka)
srv(iblock,ja,ka) = sab*pro(ja,ka)
enddo
enddo
!
! partial potential and overlap matrix elements
!
if (iblock .eq. nblock) then
do ka = kmin,kamax
nk = jmax-ka+1
call dgemm ('n','n',nb,nk,nblock,1.d0, &
prv(nlb,1,ka),n,hrv(1,ka,ka),nblock, &
1.d0,hro(nlb,ka,ka),n)
call dgemm ('n','n',nb,nk,nblock,1.d0, &
prv(nlb,1,ka),n,srv(1,ka,ka),nblock, &
1.d0,sro(nlb,ka,ka),n)
enddo
iblock = 0
endif
endif
enddo
if (iblock .gt. 0) then
do ka = kmin,kamax
nk = jmax-ka+1
call dgemm ('n','n',nb,nk,iblock,1.d0,prv(nlb,1,ka),n, &
hrv(1,ka,ka),nblock,1.d0,hro(nlb,ka,ka),n)
call dgemm ('n','n',nb,nk,iblock,1.d0,prv(nlb,1,ka),n, &
srv(1,ka,ka),nblock,1.d0,sro(nlb,ka,ka),n)
enddo
endif
if (inner .gt. 0) then
!
! vibrational functions in arrangement ia
!
call pvib (tmin,ta,tmax,cvi(1,nla),nvi,na,pvi(nla),0)
!
! full potential, overlap, and Coriolis matrix elements
!
cent = 1.d0/(rho*cos(ta))**2
do la = nla,nha
ja = jlev(la)
ka = klev(la)
do lb = nlb,nhb
h(la,lb) = h(la,lb)+pvi(la)*hro(lb,ja,ka)
s(la,lb) = s(la,lb)+pvi(la)*sro(lb,ja,ka)
enddo
if (ka .gt. kmin) then
crv = cro(1,la)*cent*pvi(la)
do lb = nlb,nhb
h(la,lb) = h(la,lb)+crv*sro(lb,ja,ka-1)
enddo
endif
if (ka.lt.ja .and. ka.lt.kamax) then
crv = cro(3,la)*cent*pvi(la)
do lb = nlb,nhb
h(la,lb) = h(la,lb)+crv*sro(lb,ja,ka+1)
enddo
endif
enddo
endif
enddo
return
end