-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathredrot.f90
80 lines (79 loc) · 1.87 KB
/
redrot.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
! File created at Fri Jun 5 21:58:57 PDT 2020
! Original source code: redrot.f
function redrot (rj,rk,rm,beta)
implicit double precision (a-h,o-z)
!
! -----------------------------------------------------------------
! This function uses eq. (4.1.23) of Edmonds
! to calculate the reduced rotation matrix element
! d(j,k,m;beta) = <jk|exp(+i*beta*Jy/hbar)|jm>.
! -----------------------------------------------------------------
!
parameter (zero = 0.0d0)
parameter (half = 0.5d0)
parameter (one = 1.0d0)
parameter (two = 2.0d0)
!
! half integer angular momenta
!
sj = half*nint(two*rj)
sk = half*nint(two*rk)
sm = half*nint(two*rm)
!
! projection ranges
!
redrot = zero
if (sk.gt.sj .or. sk.lt.-sj) return
if (sm.gt.sj .or. sm.lt.-sj) return
if (mod(sj-sk,one) .ne. zero) return
if (mod(sj-sm,one) .ne. zero) return
!
! reflection symmetries
!
if (sk+sm .ge. zero) then
if (sk-sm .ge. zero) then
tk = sk
tm = sm
isign = 0
else
tk = sm
tm = sk
isign = sk-sm
endif
else
if (sk-sm .ge. zero) then
tk = -sm
tm = -sk
isign = 0
else
tk = -sk
tm = -sm
isign = sk-sm
endif
endif
!
! evaluation
!
n = sj-tk
ia = tk-tm
ib = tk+tm
a = ia
b = ib
beta2 = half*beta
cosb2 = cos(beta2)
sinb2 = sin(beta2)
cosb = (cosb2-sinb2)*(cosb2+sinb2)
d1 = pjacob(n,a,b,cosb)
d2 = cosb2**ib*sinb2**ia
d3 = d1*d2
d4 = d3*d3
ti = tm
do i = 1,ia
ti = ti+one
d4 = d4*(sj+ti)/(sj-ti+one)
enddo
d4 = sqrt(d4)
redrot = sign(d4,d3)
if (mod(isign,2) .ne. 0) redrot = -redrot
return
end