-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
465 lines (403 loc) · 23.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
from torch.utils.data import DataLoader, Subset
import torch
from utils import *
from architecture.ht import HierarchicalTransformer
from architecture.ht_mine import HT_Mine, Task, Stage, norms
from architecture.ht_vicreg import VICReg
from losses import mse_loss, ce_loss, cs_loss, vicreg_loss
from train import train_mine, train_cls, fine_tune, linear_probe, test
from train_baselines import train_vicreg
import sys
import wandb_log
from random import randint
import traceback
run = None
DEBUG = False
def main():
global run
global DEBUG
try:
custom_config_file = sys.argv[1]
except:
print("No custom config file provided. Running with default.")
custom_config_file = None
# ***************************************************************************
# ************* SETUP *******************
# ***************************************************************************
# Load config files
config = read_n_setup_params(custom_config_file)
print('Configuration loaded from ' + (custom_config_file if custom_config_file else 'default.'))
print("Running model with base name " + config['train']['model_name'])
if config['train']['dataset'] == 'imagenet':
from data_utils.imagenet_handler import CustomDataset
else:
if config['data']['data_loader'] == 'hdf5':
from data_utils.data_handler import CustomDataset
elif config['data']['data_loader'] == 'video':
from data_utils.data_handler_decord import CustomDataset
elif config['data']['data_loader'] == 'frames':
if config['train']['task'] == 'vicreg':
from data_utils.data_handler_frames_2seq import CustomDataset
else:
from data_utils.data_handler_frames import CustomDataset
else:
raise NotImplementedError(f"Data loader {config['data']['data_loader']} not implemented")
task = Task.str2task(config['train']['task'])
running_baseline = task != Task.MINE and task != Task.CLS
gettrace = getattr(sys, 'gettrace', None)
# TODO find a better way to do this
if (gettrace is not None and gettrace()) or DEBUG:
DEBUG = True
set_debug(True)
from train import set_wandb_log_off as set_debug_main
from eval import set_wand_log_off as set_debug_eval
if running_baseline:
from train_baselines import set_wandb_log_off as set_debug_baselines
set_debug_baselines(True)
set_debug_main(True)
set_debug_eval(True)
if not DEBUG:
with open('wandb.key','r') as k:
wandb_key = k.read().strip()
try:
wandb.login(key=wandb_key)
run = wandb.init(project=config['train']['wb_project'], config=config)
wandb.run.name = config['train']['model_name']
print("Successfully connected with wandb")
except Exception:
print(traceback.format_exc())
print("Failed to setup wandb!")
torch.manual_seed(config['train']['seed'])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Running on " + str(device))
# ***************************************************************************
# ************* DATA LOADING *******************
# ***************************************************************************
# Create data_loader
if config['train']['dataset'] in ['ucf101', 'ssv2', 'k400']:
if config['train']['dataset'] == 'ucf101':
eval_on = 'test'
else:
eval_on = 'val'
dataset_train = CustomDataset(config, 'train', dataset=config['train']['dataset'])
dataset_test = CustomDataset(config, eval_on, dataset=config['train']['dataset'])
elif config['train']['dataset'] == 'imagenet':
groups = eval(config['arch']['groups'])
assert len(groups) == 2 and 'backbone' in groups and 'space' in groups, \
"When using 'imagenet' dataset, only 2 groups are allowed ('backbone' and 'space')"
dataset_train = CustomDataset(config, 'train')
if config['data']['imagenet']['sampler']['step'] > 1:
dataset_train_bak = dataset_train
dataset_train = Subset(dataset_train,
range(0,
len(dataset_train),
config['data']['imagenet']['sampler']['step']))
dataset_test = CustomDataset(config, 'val')
else:
raise Exception('Selected dataset '+config['train']['dataset']+' not found')
train_loader = DataLoader(dataset_train,
batch_size=config['train']['batch_size'],
shuffle=True,
num_workers=config['data']['dl_workers'],
persistent_workers=config['data']['dl_workers'] > 0)
test_loader = DataLoader(dataset_test,
batch_size=config['train']['test_batch_size'] if config['train'][
'test_batch_size'] > 0 else
config['train']['batch_size'],
shuffle=False,
num_workers=config['data']['dl_workers'],
persistent_workers=config['data']['dl_workers'] > 0)
print('Data loader for '+config['train']['dataset']+' ready')
# DATA AUGMENTATION
if running_baseline and config['data']['data_augmentation']['use_datAug'] != 1.0:
print(f"WARINING: Data augmentation is necessary for baselines (currently {task}) "
f"but was set to {config['data']['data_augmentation']['use_datAug']}. "
f"As it is required, it will be set to 1.")
config['data']['data_augmentation']['use_datAug'] = 1.0
# Select re-normalization mean and std of a specific dataset (used right after data augmentation)
select_normalization_dataset(config, norms)
data_augmentation = (config['data']['data_augmentation']['use_datAug'],
config['data'][config['train']['dataset']]['sampler']['height'],
config['data'][config['train']['dataset']]['sampler']['width'],
{'augs': config['data']['data_augmentation']['augs'],
'normalization': config['data']['data_augmentation']['normalization']})
# ***************************************************************************
# ************* MODEL LOADING *******************
# ***************************************************************************
# Create model
if task == Task.MINE:
model = HT_Mine(config)
elif task == Task.CLS:
model = HierarchicalTransformer(config)
elif task == Task.VICREG:
model = VICReg(config)
model.to(device)
# Attach the model to wandb
if run:
wandb.watch(model, log='all', log_freq=config['train']['log_interval']*10)
wandb_log.create_wandb_metrics(eval(config['arch']['groups']),
config['train']['ftune_interval'],
task,
config['train']['loss_fn'].lower() if task != Task.CLS else None,
config['train']['predictor']['pred_aside'] and task != Task.CLS)
print("Initialised model with {} trainable parameters".format(count_parameters(model, True)))
# ***************************************************************************
# ************* OPTIMIZERS / SCHEDULERS *******************
# ***************************************************************************
groups = model.get_groups()
# CLASSIFICATION OBJECTIVE
if task == Task.CLS:
optimizer, scheduler, instr_update_sch = create_classification_optimizer_and_scheduler(config, model)
main_scaler = torch.cuda.amp.GradScaler(enabled=config['train']['use_mixed_precision'])
# SELF-PREDICTION
elif task == Task.MINE:
optimizer, scheduler, instr_update_sch = select_right_optimizer(config, groups, model)
# Build one scaler per module
main_scaler = dict()
if 'module' in optimizer:
main_scaler['module'] = torch.cuda.amp.GradScaler(enabled=config['train']['use_mixed_precision'])
else:
for group in groups:
main_scaler[group] = torch.cuda.amp.GradScaler(enabled=config['train']['use_mixed_precision'])
# OTHER BASELINES
elif task == Task.VICREG or task == Task.SVT:
optimizer, scheduler, instr_update_sch = select_right_optimizer(config, groups, model)
main_scaler = torch.cuda.amp.GradScaler(enabled=config['train']['use_mixed_precision'])
else:
raise (Exception, "Selected task '" + task + "' does not exist!")
num_iters_grad_accum = config['train']['num_iters_grad_accum']
use_mixed_precision = (config['train']['use_mixed_precision'], config['train']['type_for_mixed_prec'])
print("Optimizer and Schedulers ready.")
print("Selected task:", task)
random_value = str(randint(0, 1000000))
print("Assigned random number to model: "+random_value)
# ***************************************************************************
# ************* RESUME TRAINING *******************
# ***************************************************************************
# If resuming from checkpoint, load model, optimizer and scheduler state
# TODO this won't work for baselines, must pre-load model.backbone instead
if config['train']['resume_path']:
print("Loading model from checkpoint")
# TODO also load optimizer / epoch information for proper resuming
if config['train']['resume_all']:
l = load_model(model, config, checkpoint=True, optim=optimizer, sched=scheduler)
else:
l = float('inf')
load_model(model, config, checkpoint=True, load_optim_sched=False,
strict=not config['train']['use_curriculum'])
else:
l = float('inf')
model.to(device)
# ***************************************************************************
# ************* LOSS SELECTION *******************
# ***************************************************************************
# Setup loss function
loss_fcn = None
loss_params = dict()
if task == Task.MINE:
if config['train']['loss_fn'].upper() == 'CE':
loss_fcn = ce_loss
loss_params = config['train']['loss_params']['CE']
assert loss_params['tgt_temp'] != 0.0, "Cross Entropy selected but temperature is set to 0"
assert loss_params['pred_temp'] != 0.0, "Cross Entropy selected but temperature is set to 0"
elif config['train']['loss_fn'].upper() == 'CS':
loss_fcn = cs_loss
loss_params = config['train']['loss_params']['CS']
elif config['train']['loss_fn'].upper() == 'MSE':
loss_fcn = mse_loss
# MSE has no furhter parameters!
#loss_params = config['train']['loss_params']['MSE']
elif config['train']['loss_fn'].upper() == 'VICREG':
loss_fcn = vicreg_loss
loss_params = config['train']['loss_params']['VICREG']
else:
raise Exception("Selected loss " + config['train']['loss_fn'] + " is not implemented.")
if loss_fcn is not None:
print(f"Loss function {loss_fcn} with params {loss_params} selected.")
# ***************************************************************************
# ************* INITIAL VALIDATION ROUND *******************
# ***************************************************************************
is_val_interval_type_linear = config['train']['val_interval_type'] == 'linear'
if not is_val_interval_type_linear and task == Task.CLS:
config['train']['val_interval'] = round(config['train']['val_interval'])
config['train']['val_interval_type'] = 'linear'
is_val_interval_type_linear = True
print("WARNING: exponential validation schedule type is not implemented for supervised runs. Using linear"
f"with interval {config['train']['val_interval']}")
val_round_count = 0
prev_error_val = float('inf')
# Exponential interval for validation won't work if interval is 1.5 and no initial validation round is run
if not is_val_interval_type_linear and config['train']['val_interval'] == 1.5:
val_round_count = 1
# ***************************************************************************
# ************* MAIN TRAINING LOOP *******************
# ***************************************************************************
print("Starting training loop")
best_epoch = 0 # Used for curriculum learning to load best epoch from previous step!
for epoch in range(1, config['train']['epochs'] + 1):
if not DEBUG and run:
wandb_log.wandb_log_lr(config, optimizer, epoch)
# TRAIN
if task == Task.CLS:
train_cls(model, device, train_loader, optimizer, epoch, Stage.TRAIN,
config['train']['log_interval'], main_scaler, use_datAug=data_augmentation,
num_iters_grad_accum=num_iters_grad_accum,
use_mixed_prec=use_mixed_precision)
elif task == Task.MINE:
train_mine(model, device, train_loader, optimizer, epoch,
config['train']['log_interval'],
main_scaler,
loss_fcn,
config['train']['loss_weights'],
loss_params,
use_datAug=data_augmentation,
num_iters_grad_accum=num_iters_grad_accum,
use_mixed_prec=use_mixed_precision)
elif task == Task.VICREG:
train_vicreg(model, device, train_loader, optimizer,
epoch, config['train']['log_interval'], main_scaler,
datAug=data_augmentation,
num_iters_grad_accum=num_iters_grad_accum,
use_mixed_prec=use_mixed_precision)
else:
raise(Exception, "Selected task '"+task+"' has no associated train function!!")
# VALIDATION
# If task is SSL do KNN
if task != Task.CLS:
evalt = False
is_linear_val_interval_turn = (config['train']['val_interval'] and
(epoch % config['train']['val_interval'] == 0))
is_first_or_last_epoch = epoch == 1 or epoch == config['train']['epochs']
is_expon_val_interval_turn = (config['train']['val_interval'] and
(int(config['train']['val_interval']**val_round_count) == epoch or
is_first_or_last_epoch))
# KNN VALIDATION ROUND
if ((not is_val_interval_type_linear) and is_expon_val_interval_turn) or \
(is_val_interval_type_linear and is_linear_val_interval_turn):
print(f"Doing KNN validation round {val_round_count}")
if running_baseline:
aux_model = model.backbone
else:
aux_model = model
# TODO compute ssl losses on eval set!
# Extract train and test features
train_features, train_labels, test_features, test_labels = extract_features(aux_model,
device,
train_loader,
test_loader)
l = knn_eval(train_features, train_labels, test_features, test_labels)
# Update best and save checkpoint
if config['train']['save_model']:
# TODO update this, knn returns acc (so acc > best)
# TODO what dataloader should I use? all features?
prev_error_val, did_save = save_model_if_better(aux_model, optimizer, scheduler, config, epoch, l,
prev_error_val, extra=random_value, mod='probe')
if did_save:
best_epoch = epoch
val_round_count += 1
elif task == Task.CLS:
print("Doing validation round")
if epoch % config['train']['val_interval'] == 0:
# Simply test
l = test(model, device, test_loader, epoch, loss_params, task)
if config['train']['save_model']:
prev_error_val, did_save = save_model_if_better(model, optimizer, scheduler, config, epoch, l,
prev_error_val, extra=random_value, mod='cls')
if did_save:
best_epoch = epoch
else:
print("Warning, no validation function for selected task ", task)
# SCHEDULER STEP
if (config['train']['use_single_optimizer'] and
config['train']['predictor']['pred_aside'] != 2) or \
task == Task.CLS or running_baseline:
eval(instr_update_sch)
else:
for group in scheduler.keys():
eval(instr_update_sch)
if config['train']['interpolate_loss_weights_to_uniformity']:
step_loss_weights(config['train']['loss_weights'], epoch, config['train']['epochs'] + 1)
# TODO could do something similar with video data loader so it shuffles every epoch when max_seq_per_video is > 0
# or simply set persistent_workers to False!!
if config['train']['dataset'] == 'imagenet' and config['data']['imagenet']['sampler']['step'] > 1:
del dataset_train
dataset_train = Subset(dataset_train_bak,
range(epoch % config['data']['imagenet']['sampler']['step'],
len(dataset_train_bak),
config['data']['imagenet']['sampler']['step']))
del train_loader
train_loader = DataLoader(dataset_train,
batch_size=config['train']['batch_size'],
shuffle=True,
num_workers=config['data']['dl_workers'],
persistent_workers=config['data']['dl_workers'] > 0)
elif config['train']['dataset'] != 'imagenet' and \
config['data']['dl_workers'] > 0 and \
config['data']['max_seq_per_video'] > 0:
del train_loader
# Create again so internal shuffle is redone for all workers
train_loader = DataLoader(dataset_train,
batch_size=config['train']['batch_size'],
shuffle=True,
num_workers=config['data']['dl_workers'],
persistent_workers=config['data']['dl_workers'] > 0)
elif config['train']['dataset'] != 'imagenet' and \
config['data']['dl_workers'] == 0 and \
config['data']['max_seq_per_video'] > 0:
# Shuffle train loader
train_loader.dataset.compute_mapping_and_offset()
if not DEBUG and run:
run.finish()
# ***************************************************************************
# ********* CREATE NEW CONFIG FILE FOR CURRICULUM LEARNING *****************
# ***************************************************************************
if config['train']['use_curriculum']:
# Increment curriculum step
config['train']['curriculum_step'] += 1
# Update architecture, training and other data config parameters
update_config_dicts(config, config['train']['curriculum']['step_' + str(config['train']['curriculum_step'])])
# Save model info to be loaded back
config['train']['resume_path'] = config['train']['model_name'] + random_value
config['train']['resume_epoch'] = best_epoch
# Curriculum has to be done with probing (fine-tunning will save fine-tuned model)
config['train']['resume_mod'] = 'cls' if task == Task.CLS else 'probe'
# Add which step of the curriculum this is to the end of the name
if '--' in config['train']['model_name']:
base_name = config['train']['model_name'].split('--')[0]
else:
base_name = config['train']['model_name']
config['train']['model_name'] = base_name + '--CLp-' + \
str(config['train']['curriculum_step'])
if custom_config_file is None:
print("ERROR: No custom config file was provided. Curriculum learning will now fail.")
print("\t What follows are the necessary data to load the proper model")
print("\t\tresume_path: ", config['train']['resume_path'])
print("\t\tresume_epoch: ", config['train']['resume_epoch'])
print("\t\tresume_mod: ", config['train']['resume_mod'])
print("\t\tcurriculum_step: ", config['train']['curriculum_step'])
else:
if '--' in custom_config_file:
base_name = custom_config_file.split('--')[0]
else:
base_name = custom_config_file.split('.')[0]
new_config_file_name = './config/' + base_name + \
'--CLp-' + str(config['train']['curriculum_step']) + '.yaml'
save_config_file(config, new_config_file_name)
print("Saved new config for curriculum learning in ", new_config_file_name)
eval_scaler = torch.cuda.amp.GradScaler(enabled=config['train']['use_mixed_precision'])
if config['train']['test_type'] == 'probe' and config['train']['probe_epochs']:
# DO PROBING
linear_probe(config, aux_model, device, train_loader, test_loader,
epoch, eval_scaler, loss_fcn, loss_params,
random_value, probe_round_count, use_datAug=data_augmentation,
num_iters_grad_accum=num_iters_grad_accum,
use_mixed_prec=use_mixed_precission)
elif config['train']['test_type'] == 'ftune' and config['train']['ftune_epochs']:
# DO FINE-TUNNING
l = fine_tune(config, aux_model, device, train_loader, test_loader,
epoch, eval_scaler, loss_params,
ftune_round_count, use_datAug=data_augmentation,
num_iters_grad_accum=num_iters_grad_accum,
use_mixed_prec=use_mixed_precision)
if __name__ == '__main__':
main()