-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_s3d.py
194 lines (149 loc) · 6.59 KB
/
train_s3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch import no_grad, device, cuda
import wandb
from architecture.s3d import S3D
from architecture.ht_mine import DataAugmentation
from utils import create_classification_optimizer_and_scheduler, count_parameters, save_model_if_better
from wandb_log import wandb_logging, create_wandb_metrics
from architecture.ht_mine import Stage, Task
from data_utils.data_handler import UCF101
import sys
import os.path as op
import yaml
import traceback
from random import random
DEBUG = False
def train(model, data_loader, optim, log_interval, device=None, use_datAug=(0.0,120,160)):
model.train()
if device is None:
device = model.device
num_batches_per_epoch = len(data_loader)
use_datAug, h, w = use_datAug
if use_datAug:
datAug = DataAugmentation(h,w)
# Acumulate loss for epoch summary
total_loss = 0
if DEBUG:
max_iter_for_debugging = 150
iterat = 0
for batch_idx, (data, label) in enumerate(data_loader):
if DEBUG:
if iterat > max_iter_for_debugging:
break
iterat += 1
data, label = data.to(device), label.to(device)
if random() < use_datAug:
data = datAug(data)
optim.zero_grad()
out = model(data.permute(0, 4, 1, 3, 2))
loss = F.nll_loss(F.log_softmax(out, dim=-1), label)
loss.backward()
optim.step()
total_loss += loss.item()
if batch_idx % log_interval == 0:
print("TRAIN: Iteration", batch_idx, 'of epoch', epoch, 'loss:', round(loss.item(),3))
if not DEBUG:
wandb_logging(Stage.TRAIN, Task.CLS, epoch, batch_idx, num_batches_per_epoch, {'cls': loss})
if not DEBUG:
wandb_logging(Stage.TRAIN, Task.CLS, epoch, batch_idx, num_batches_per_epoch, {'cls': total_loss}, summary=True)
def validate(model, data_loader, epoch, device=None):
model.eval()
if device is None:
device = model.device
total_loss = 0
correct = 0
num_samples_in_dataset = len(data_loader)*data_loader.batch_size
with no_grad():
if DEBUG:
max_iter_for_debugging = 150
iterat = 0
for batch_idx, (data, label) in enumerate(data_loader):
if DEBUG:
if iterat > max_iter_for_debugging:
break
iterat += 1
data, label = data.to(device), label.to(device)
out = model(data.permute(0, 4, 1, 3, 2))
total_loss += F.nll_loss(F.log_softmax(out, dim=-1), label, reduction='sum').item()
pred = out.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(label.view_as(pred)).sum().item()
total_loss /= num_samples_in_dataset
acc = 100. * correct / num_samples_in_dataset
# In order to keep log_training from growing in optional parameters, I am overloading batch_idx for accuracy
print('TEST: Acc.' + str(round(acc, 3)) + '%', 'loss', round(total_loss, 3))
if not DEBUG:
wandb_logging(Stage.EVAL, Task.CLS, epoch, -1, len(data_loader), {'cls': total_loss, 'acc': acc}, summary=True)
return total_loss
if __name__ == '__main__':
try:
custom_config_file = sys.argv[1]
except:
print("No custom config file provided. Running with default.")
custom_config_file = 's3d_config.yaml'
gettrace = getattr(sys, 'gettrace', None)
if (gettrace is not None and gettrace()) or DEBUG:
DEBUG = True
# ***************************************************************************
# ************* SETUP *******************
# ***************************************************************************
# Load config files
with open(op.join('./config', custom_config_file), 'r') as f:
config = yaml.load(f, Loader=yaml.loader.SafeLoader)
run = False
if not DEBUG:
with open('wandb.key', 'r') as k:
wandb_key = k.read().strip()
try:
wandb.login(key=wandb_key)
run = wandb.init(project=config['train']['wb_project'], config=config)
wandb.run.name = config['train']['model_name']
print("Successfully connected with wandb")
except Exception:
print(traceback.format_exc())
print("Failed to setup wandb!")
num_epochs = config['train']['epochs']
val_interval = config['train']['val_interval']
log_interval = config['train']['log_interval']
n_classes = config['data'][config['train']['dataset']]['num_classes']
device = device("cuda" if cuda.is_available() else "cpu")
# CREATE S3D MODEL
# In order to pre-load weights, may need to initialise model with 400 output dim
if config['train']['resume']:
model = S3D(400, True, True)
model.load_weights()
model.reset_out_layer(n_classes)
else:
model = S3D(n_classes, True, True)
model.to(device)
print("Model ready with ", count_parameters(model), 'parameters')
if run:
wandb.watch(model, log='all', log_freq=config['train']['log_interval']*10)
create_wandb_metrics([], False, Task.CLS, None, False)
# TODO Keep only the stem?
# PREPARE OPTIMIZER / SCHEDULER
optimizer, scheduler, ins_sched_step = create_classification_optimizer_and_scheduler(config, model)
# PREPARE DATA LOADER
dataset_train = UCF101(config, 'train')
dataset_test = UCF101(config, 'test')
train_loader = DataLoader(dataset_train,
batch_size=config['train']['batch_size'],
shuffle=True,
num_workers=config['data']['dl_workers'],
persistent_workers=config['data']['dl_workers'] > 0)
test_loader = DataLoader(dataset_test,
batch_size=config['train']['batch_size'],
shuffle=False,
num_workers=config['data']['dl_workers'],
persistent_workers=config['data']['dl_workers'] > 0)
# MAIN LOOP
best_loss = float('inf')
if config['train']['val_init']:
best_loss = validate(model, test_loader, 0, device)
for epoch in range(1, num_epochs+1):
train(model, train_loader, optimizer, log_interval, device)
if epoch % val_interval == 0:
l = validate(model, test_loader, epoch, device)
if l < best_loss:
best_loss = save_model_if_better(model,optimizer,scheduler,config,epoch,l,best_loss,'s3d')
eval(ins_sched_step)