-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
239 lines (191 loc) · 9.21 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
import copy
import json
import logging
import torch
from torch.utils.data import TensorDataset
from utils import get_labels
import pdb
logger = logging.getLogger(__name__)
class InputExample(object):
"""
A single training/test example for simple sequence classification.
Args:
guid: Unique id for the example.
words: list. The words of the sequence.
labels: (Optional) list. The slot labels of the example.
"""
def __init__(self, guid, words, labels):
self.guid = guid
self.words = words
self.labels = labels
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, attention_mask, token_type_ids, label_ids):
self.input_ids = input_ids
self.attention_mask = attention_mask
self.token_type_ids = token_type_ids
self.label_ids = label_ids
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
class NaverNerProcessor(object):
"""Processor for the Naver NER data set """
def __init__(self, args):
self.args = args
self.labels_lst = get_labels(args)
@classmethod
def _read_file(cls, input_file):
"""Read tsv file, and return words and label as list"""
with open(input_file, "r", encoding="utf-8") as f:
lines = []
for line in f:
lines.append(line.strip())
return lines
def _create_examples(self, dataset, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, data) in enumerate(dataset):
words, labels = data.split('\t')
words = list(words) # words.split()
labels = labels.split()
guid = "%s-%s" % (set_type, i)
labels_idx = []
for label in labels:
labels_idx.append(self.labels_lst.index(label) if label in self.labels_lst else self.labels_lst.index("UNK"))
if len(words) != len(labels_idx):
print(words)
assert len(words) == len(labels_idx)
if i % 10000 == 0:
logger.info(data)
examples.append(InputExample(guid=guid, words=words, labels=labels_idx))
return examples
def get_examples(self, mode):
"""
Args:
mode: train, dev, test
"""
file_to_read = None
if mode == 'train':
file_to_read = self.args["train_file"]
elif mode == 'dev':
file_to_read = self.args["val_file"]
elif mode == 'test':
file_to_read = self.args["test_file"]
logger.info("LOOKING AT {}".format(os.path.join(self.args["data_dir"], file_to_read)))
return self._create_examples(self._read_file(os.path.join(self.args["data_dir"], file_to_read)), mode)
processors = {
"naver-ner": NaverNerProcessor,
}
def convert_examples_to_features(examples, max_seq_len, tokenizer,
pad_token_label_id=-100,
cls_token_segment_id=0,
pad_token_segment_id=0,
sequence_a_segment_id=0,
mask_padding_with_zero=True):
# Setting based on the current model type
cls_token = tokenizer.cls_token
sep_token = tokenizer.sep_token
unk_token = tokenizer.unk_token
pad_token_id = tokenizer.pad_token_id
features = []
for (ex_index, example) in enumerate(examples):
if ex_index % 5000 == 0:
logger.info("Writing example %d of %d" % (ex_index, len(examples)))
# Tokenize word by word (for NER)
tokens = []
label_ids = []
for word, slot_label in zip(example.words, example.labels):
word_tokens = tokenizer.tokenize(word)
if not word_tokens:
word_tokens = [unk_token] # For handling the bad-encoded word
tokens.extend(word_tokens)
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
label_ids.extend([int(slot_label)] + [pad_token_label_id] * (len(word_tokens) - 1))
# Account for [CLS] and [SEP]
special_tokens_count = 2
if len(tokens) > max_seq_len - special_tokens_count:
tokens = tokens[: (max_seq_len - special_tokens_count)]
label_ids = label_ids[: (max_seq_len - special_tokens_count)]
# Add [SEP] token
tokens += [sep_token]
label_ids += [pad_token_label_id]
token_type_ids = [sequence_a_segment_id] * len(tokens)
# Add [CLS] token
tokens = [cls_token] + tokens
label_ids = [pad_token_label_id] + label_ids
token_type_ids = [cls_token_segment_id] + token_type_ids
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
padding_length = max_seq_len - len(input_ids)
input_ids = input_ids + ([pad_token_id] * padding_length)
attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length)
label_ids = label_ids + ([pad_token_label_id] * padding_length)
assert len(input_ids) == max_seq_len, "Error with input length {} vs {}".format(len(input_ids), max_seq_len)
assert len(attention_mask) == max_seq_len, "Error with attention mask length {} vs {}".format(len(attention_mask), max_seq_len)
assert len(token_type_ids) == max_seq_len, "Error with token type length {} vs {}".format(len(token_type_ids), max_seq_len)
assert len(label_ids) == max_seq_len, "Error with slot labels length {} vs {}".format(len(label_ids), max_seq_len)
if ex_index < 5:
logger.info("*** Example ***")
logger.info("guid: %s" % example.guid)
logger.info("tokens: %s" % " ".join([str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask]))
logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids]))
logger.info("label: %s " % " ".join([str(x) for x in label_ids]))
features.append(
InputFeatures(input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
label_ids=label_ids
))
return features
def load_and_cache_examples(args, tokenizer, mode, use_cache=True):
processor = processors[args["task"]](args)
# Load data features from cache or dataset file
cached_file_name = 'cached_{}_{}_{}_{}'.format(
args["task"], list(filter(None, args["model_name_or_path"].split("/"))).pop(), args["max_seq_len"], mode)
pad_token_label_id = torch.nn.CrossEntropyLoss().ignore_index
cached_features_file = os.path.join(args["data_dir"], cached_file_name)
if os.path.exists(cached_features_file) and use_cache:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", args["data_dir"])
if mode == "train":
examples = processor.get_examples("train")
elif mode == "dev":
examples = processor.get_examples("dev")
elif mode == "test":
examples = processor.get_examples("test")
else:
raise Exception("For mode, Only train, dev, test is available")
features = convert_examples_to_features(examples, args["max_seq_len"], tokenizer, pad_token_label_id=pad_token_label_id)
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_label_ids)
return dataset