-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy patheval.py
183 lines (170 loc) · 9.22 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import argparse
import metric
from sklearn.cluster import KMeans
from sklearn.metrics.cluster import normalized_mutual_info_score, adjusted_rand_score
from sklearn.metrics.cluster import homogeneity_score, adjusted_mutual_info_score
import numpy as np
import random
import sys,os
from scipy.io import loadmat
from sklearn.metrics import confusion_matrix
import pandas as pd
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style("whitegrid", {'axes.grid' : False})
def plot_embedding(X, labels, classes=None, method='tSNE', cmap='tab20', figsize=(8, 8), markersize=15, dpi=300,marker=None,
return_emb=False, save=False, save_emb=False, show_legend=True, show_axis_label=True, **legend_params):
if marker is not None:
X = np.concatenate([X, marker], axis=0)
N = len(labels)
matplotlib.rc('xtick', labelsize=20)
matplotlib.rc('ytick', labelsize=20)
matplotlib.rcParams.update({'font.size': 22})
if X.shape[1] != 2:
if method == 'tSNE':
from sklearn.manifold import TSNE
X = TSNE(n_components=2, random_state=124).fit_transform(X)
if method == 'PCA':
from sklearn.decomposition import PCA
X = PCA(n_components=2, random_state=124).fit_transform(X)
if method == 'UMAP':
from umap import UMAP
X = UMAP(n_neighbors=15, min_dist=0.1, metric='correlation').fit_transform(X)
labels = np.array(labels)
plt.figure(figsize=figsize)
if classes is None:
classes = np.unique(labels)
#tab10, tab20, husl, hls
if cmap is not None:
cmap = cmap
elif len(classes) <= 10:
cmap = 'tab10'
elif len(classes) <= 20:
cmap = 'tab20'
else:
cmap = 'husl'
colors = sns.husl_palette(len(classes), s=.8)
#markersize = 80
for i, c in enumerate(classes):
plt.scatter(X[:N][labels==c, 0], X[:N][labels==c, 1], s=markersize, color=colors[i], label=c)
if marker is not None:
plt.scatter(X[N:, 0], X[N:, 1], s=10*markersize, color='black', marker='*')
legend_params_ = {'loc': 'center left',
'bbox_to_anchor':(1.0, 0.45),
'fontsize': 20,
'ncol': 1,
'frameon': False,
'markerscale': 1.5
}
legend_params_.update(**legend_params)
if show_legend:
plt.legend(**legend_params_)
sns.despine(offset=10, trim=True)
if show_axis_label:
plt.xlabel(method+' dim 1', fontsize=12)
plt.ylabel(method+' dim 2', fontsize=12)
if save:
plt.savefig(save, format='png', bbox_inches='tight',dpi=dpi)
def cluster_eval(labels_true,labels_infer):
purity = metric.compute_purity(labels_infer, labels_true)
nmi = normalized_mutual_info_score(labels_true, labels_infer)
ari = adjusted_rand_score(labels_true, labels_infer)
homogeneity = homogeneity_score(labels_true, labels_infer)
ami = adjusted_mutual_info_score(labels_true, labels_infer)
print('NMI = {}, ARI = {}, Purity = {},AMI = {}, Homogeneity = {}'.format(nmi,ari,purity,ami,homogeneity))
return nmi,ari,homogeneity
def get_best_epoch(exp_dir, dataset, measurement='NMI'):
results = []
for each in os.listdir('results/%s/%s'%(dataset,exp_dir)):
if each.startswith('data'):
#print('results/%s/%s/%s'%(dataset,exp_dir,each))
data = np.load('results/%s/%s/%s'%(dataset,exp_dir,each))
data_x_onehot_,label_y = data['arr_1'],data['arr_2']
label_infer = np.argmax(data_x_onehot_, axis=1)
nmi,ari,homo = cluster_eval(label_y,label_infer)
results.append([each,nmi,ari,homo])
if measurement == 'NMI':
results.sort(key=lambda a:-a[1])
elif measurement == 'ARI':
results.sort(key=lambda a:-a[2])
elif measurement == 'HOMO':
results.sort(key=lambda a:-a[3])
else:
print('Wrong indicated metric')
sys.exit()
print('NMI = {}\tARI = {}\tHomogeneity = {}'.format(results[0][1],results[0][2],results[0][3]))
return results[0][0]
def save_embedding(emb_feat,save,sep='\t'):
index = ['cell%d'%(i+1) for i in range(emb_feat.shape[0])]
columns = ['feat%d'%(i+1) for i in range(emb_feat.shape[1])]
data_pd = pd.DataFrame(emb_feat,index = index,columns=columns)
data_pd.to_csv(save,sep=sep)
def save_clustering(label,save):
f = open(save,'w')
res_list = ['cell%d\t%s'%(i,str(item)) for i,item in enumerate(label)]
f.write('\n'.join(res_list))
f.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Simultaneous deep generative modeling and clustering of single cell genomic data')
parser.add_argument('--data', '-d', type=str, help='which dataset')
parser.add_argument('--timestamp', '-t', type=str, help='timestamp')
parser.add_argument('--epoch', '-e', type=int, help='epoch or batch index')
parser.add_argument('--train', type=bool, default=False)
parser.add_argument('--save', '-s', type=str, help='save latent visualization plot (e.g., t-SNE)')
parser.add_argument('--no_label', action='store_true',help='whether the dataset has label')
args = parser.parse_args()
has_label = not args.no_label
if has_label:
if args.train:
exp_dir = [item for item in os.listdir('results/%s'%args.data) if item.startswith(args.timestamp)][0]
if args.epoch is None:
epoch = get_best_epoch(exp_dir,args.data,'ARI')
else:
epoch = args.epoch
data = np.load('results/%s/%s/%s'%(args.data,exp_dir,epoch))
embedding, label_infered_onehot = data['arr_0'],data['arr_1']
embedding_before_softmax = embedding[:,-label_infered_onehot.shape[1]:]
label_infered = np.argmax(label_infered_onehot, axis=1)
label_true = [item.strip() for item in open('datasets/%s/label.txt'%args.data).readlines()]
save_clustering(label_infered,save='results/%s/%s/scDEC_cluster.txt'%(args.data,exp_dir))
save_embedding(embedding,save='results/%s/%s/scDEC_embedding.csv'%(args.data,exp_dir),sep='\t')
plot_embedding(embedding,label_true,save='results/%s/%s/scDEC_embedding.png'%(args.data,exp_dir))
else:
if args.data == 'PBMC10k':
data = np.load('results/%s/data_pre.npz'%args.data)
embedding, label_infered_onehot = data['arr_0'],data['arr_1']
embedding_before_softmax = embedding[:,-label_infered_onehot.shape[1]:]
label_infered = np.argmax(label_infered_onehot, axis=1)
barcode2label = {item.split('\t')[0]:item.split('\t')[1].strip() for item in open('datasets/%s/labels_annot.txt'%args.data).readlines()[1:]}
barcodes = [item.strip() for item in open('datasets/%s/barcodes.tsv'%args.data).readlines()]
labels_annot = [barcode2label[item] for i,item in enumerate(barcodes) if item in barcode2label.keys()]
select_idx = [i for i,item in enumerate(barcodes) if item in barcode2label.keys()]
embedding = embedding[select_idx,:] # only evaluated on cells with annotation labels
label_infered = label_infered[select_idx]
uniq_label = list(np.unique(labels_annot))
Y = np.array([uniq_label.index(item) for item in labels_annot])
cluster_eval(Y,label_infered)
save_clustering(label_infered,save='results/%s/scDEC_cluster.txt'%args.data)
save_embedding(embedding,save='results/%s/scDEC_embedding.csv'%args.data,sep='\t')
plot_embedding(embedding,labels_annot,save='results/%s/scDEC_embedding.png'%args.data)
else:
data = np.load('results/%s/data_pre.npz'%args.data)
embedding, label_infered_onehot = data['arr_0'],data['arr_1']
embedding_before_softmax = embedding[:,-label_infered_onehot.shape[1]:]
label_infered = np.argmax(label_infered_onehot, axis=1)
label_true = [item.strip() for item in open('datasets/%s/label.txt'%args.data).readlines()]
save_clustering(label_infered,save='results/%s/scDEC_cluster.txt'%args.data)
save_embedding(embedding,save='results/%s/scDEC_embedding.csv'%args.data,sep='\t')
plot_embedding(embedding,label_true,save='results/%s/scDEC_embedding.png'%args.data)
else:
if args.epoch is None:
print('Provide the epoch or batch index to analyze')
sys.exit()
else:
exp_dir = [item for item in os.listdir('results/%s'%args.data) if item.startswith(args.timestamp)][0]
data = np.load('results/%s/%s/data_at_%s.npz'%(args.data,exp_dir,args.epoch))
embedding, label_infered_onehot = data['arr_0'],data['arr_1']
label_infered = np.argmax(label_infered_onehot, axis=1)
save_clustering(label_infered,save='results/%s/%s/scDEC_cluster.txt'%(args.data,exp_dir))