-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathinference.py
187 lines (133 loc) · 5.96 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# -*- coding: utf_8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from torch.utils.data import DataLoader
from data_loader import test_data_generator
import numpy as np
def retrieve(model, queries, db, img_size, infer_batch_size):
query_paths = queries
reference_paths = db
query_img_dataset = test_data_generator(queries, img_size=img_size)
reference_img_dataset = test_data_generator(db, img_size=img_size)
query_loader = DataLoader(query_img_dataset, batch_size=infer_batch_size, shuffle=False, num_workers=4,
pin_memory=True)
reference_loader = DataLoader(reference_img_dataset, batch_size=infer_batch_size, shuffle=False, num_workers=4,
pin_memory=True)
model.eval()
model.cuda()
query_paths, query_vecs = batch_process(model, query_loader)
reference_paths, reference_vecs = batch_process(model, reference_loader)
assert query_paths == queries and reference_paths == db, "order of paths should be same"
# DBA and AQE
query_vecs, reference_vecs = db_augmentation(query_vecs, reference_vecs, top_k=10)
query_vecs, reference_vecs = average_query_expansion(query_vecs, reference_vecs, top_k=5)
sim_matrix = calculate_sim_matrix(query_vecs, reference_vecs)
indices = np.argsort(sim_matrix, axis=1)
indices = np.flip(indices, axis=1)
retrieval_results = {}
# Evaluation: mean average precision (mAP)
# You can change this part to fit your evaluation skim
for (i, query) in enumerate(query_paths):
query = query.split('/')[-1].split('.')[0]
ranked_list = [reference_paths[k].split('/')[-1].split('.')[0] for k in indices[i]]
ranked_list = ranked_list[:1000]
retrieval_results[query] = ranked_list
return retrieval_results
def db_augmentation(query_vecs, reference_vecs, top_k=10):
"""
Database-side feature augmentation (DBA)
Albert Gordo, et al. "End-to-end Learning of Deep Visual Representations for Image Retrieval,"
International Journal of Computer Vision. 2017.
https://link.springer.com/article/10.1007/s11263-017-1016-8
"""
weights = np.logspace(0, -2., top_k+1)
# Query augmentation
sim_mat = calculate_sim_matrix(query_vecs, reference_vecs)
indices = np.argsort(-sim_mat, axis=1)
top_k_ref = reference_vecs[indices[:, :top_k], :]
query_vecs = np.tensordot(weights, np.concatenate([np.expand_dims(query_vecs, 1), top_k_ref], axis=1), axes=(0, 1))
# Reference augmentation
sim_mat = calculate_sim_matrix(reference_vecs, reference_vecs)
indices = np.argsort(-sim_mat, axis=1)
top_k_ref = reference_vecs[indices[:, :top_k+1], :]
reference_vecs = np.tensordot(weights, top_k_ref, axes=(0, 1))
return query_vecs, reference_vecs
def average_query_expansion(query_vecs, reference_vecs, top_k=5):
"""
Average Query Expansion (AQE)
Ondrej Chum, et al. "Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval,"
International Conference of Computer Vision. 2007.
https://www.robots.ox.ac.uk/~vgg/publications/papers/chum07b.pdf
"""
# Query augmentation
sim_mat = calculate_sim_matrix(query_vecs, reference_vecs)
indices = np.argsort(-sim_mat, axis=1)
top_k_ref_mean = np.mean(reference_vecs[indices[:, :top_k], :], axis=1)
query_vecs = np.concatenate([query_vecs, top_k_ref_mean], axis=1)
# Reference augmentation
sim_mat = calculate_sim_matrix(reference_vecs, reference_vecs)
indices = np.argsort(-sim_mat, axis=1)
top_k_ref_mean = np.mean(reference_vecs[indices[:, 1:top_k+1], :], axis=1)
reference_vecs = np.concatenate([reference_vecs, top_k_ref_mean], axis=1)
return query_vecs, reference_vecs
def calculate_sim_matrix(query_vecs, reference_vecs):
query_vecs, reference_vecs = postprocess(query_vecs, reference_vecs)
return np.dot(query_vecs, reference_vecs.T)
def batch_process(model, loader):
feature_vecs = []
img_paths = []
for data in loader:
paths, inputs = data
feature_vec = _get_feature(model, inputs.cuda())
feature_vec = feature_vec.detach().cpu().numpy() # (batch_size, channels)
for i in range(feature_vec.shape[0]):
feature_vecs.append(feature_vec[i])
img_paths = img_paths + paths
return img_paths, np.asarray(feature_vecs)
def _get_features_from(model, x, feature_names):
features = {}
def save_feature(name):
def hook(m, i, o):
features[name] = o.data
return hook
for name, module in model.named_modules():
_name = name.split('.')[-1]
if _name in feature_names:
module.register_forward_hook(save_feature(_name))
model(x)
return features
def _get_feature(model, x):
model_name = model.__class__.__name__
if model_name == 'EmbeddingNetwork':
feature = model(x)
elif model_name == 'ResNet':
features = _get_features_from(model, x, ['fc'])
feature = features['fc']
elif model_name == 'DenseNet':
features = _get_features_from(model, x, ['classifier'])
feature = features['classifier']
else:
raise ValueError("Invalid model name: {}".format(model_name))
return feature
def postprocess(query_vecs, reference_vecs):
"""
Postprocessing:
1) Moving the origin of the feature space to the center of the feature vectors
2) L2-normalization
"""
# centerize
query_vecs, reference_vecs = _centerize(query_vecs, reference_vecs)
# l2 normalization
query_vecs = _l2_normalize(query_vecs)
reference_vecs = _l2_normalize(reference_vecs)
return query_vecs, reference_vecs
def _centerize(v1, v2):
concat = np.concatenate([v1, v2], axis=0)
center = np.mean(concat, axis=0)
return v1-center, v2-center
def _l2_normalize(v):
norm = np.expand_dims(np.linalg.norm(v, axis=1), axis=1)
if np.any(norm == 0):
return v
return v / norm